Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 070401    DOI: 10.1088/1674-1056/28/7/070401
GENERAL Prev   Next  

Reducing the calculation workload of the Green function for electromagnetic scattering in a Schwarzschild gravitational field

Shou-Qing Jia(贾守卿)
School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China
Abstract  

When the finite difference time domain (FDTD) method is used to solve electromagnetic scattering problems in Schwarzschild space-time, the Green functions linking source/observer to every surface element on connection/output boundary must be calculated. When the scatterer is electrically extended, a huge amount of calculation is required due to a large number of surface elements on the connection/output boundary. In this paper, a method for reducing the calculation workload of Green function is proposed. The Taylor approximation is applied for the calculation of Green function. New transport equations are deduced. The numerical results verify the effectiveness of this method.

Keywords:  Green function      Schwarzschild space-time      electromagnetic scattering      finite difference time domain  
Received:  15 February 2019      Revised:  25 April 2019      Accepted manuscript online: 
PACS:  04.40.Nr (Einstein-Maxwell spacetimes, spacetimes with fluids, radiation or classical fields)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  02.60.Cb (Numerical simulation; solution of equations)  
  02.70.Bf (Finite-difference methods)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61601105).

Corresponding Authors:  Shou-Qing Jia     E-mail:  jiashouqing@neuq.edu.cn

Cite this article: 

Shou-Qing Jia(贾守卿) Reducing the calculation workload of the Green function for electromagnetic scattering in a Schwarzschild gravitational field 2019 Chin. Phys. B 28 070401

[1] Plebanski J 1960 Phys. Rev. 118 1396
[2] Loeb A 2010 Phys. Rev. D 81 047503
[3] Nakajima K, Izumi K and Asada H 2014 Phys. Rev. D 90 084026
[4] Batic D, Nelson S and Nowakowski M 2015 Phys. Rev. D 91 104015
[5] Fleury P, Pitrou C and Uzan J P 2015 Phys. Rev. D 91 043511
[6] Morris J R and Schulze-Halberg A 2015 Phys. Rev. D 92 085026
[7] Daniel J and Tajima T 1997 Phys. Rev. D 55 5193
[8] Watson M and Nishikawa K I 2010 Comput. Phys. Commun. 181 1750
[9] Jia S, La D and Ma X 2018 Comput. Phys. Commun. 225 166
[10] Jia S 2018 Comput. Phys. Commun. 232 264
[11] Poisson E 2004 Living Rev. Relativ. 7 6
[12] Friedlander F 1975 The Wave Equation on a Curved Space-Time (Cambridge: Cambridge University Press)
[13] Ottewill A C and Wardell B 2011 Phys. Rev. D 84 104039
[14] Wardell B 2012 Green Functions and Radiation Reaction from a SpaceTime Perspective (Ph.D. Thesis) (Dublin: University College Dublin)
[15] Synge J L 1960 Relativity: the General Theory (Amsterdam: NorthHolland Publishing)
[16] Stephani H 1982 General Relativity (Cambridge: Cambridge University Press)
[17] Hartle J B 2003 Gravity (San Francisco: Addison Wesley)
[1] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[2] Polarization ratio characteristics of electromagnetic scattering from sea ice in polar areas
Li Zhao(赵立), Tao Xie(谢涛), Lei Meng(孟雷), William Perrie, Jin-Song Yang(杨劲松), He Fang(方贺), Han Chen(陈韩), Run-Bing Ai(艾润冰). Chin. Phys. B, 2018, 27(12): 124102.
[3] Electronic transport properties of lead nanowires
Lishu Zhang(张力舒), Yi Zhou(周毅), Xinyue Dai(代新月), Zhenyang Zhao(赵珍阳), Hui Li(李辉). Chin. Phys. B, 2017, 26(7): 073102.
[4] Different optical properties in different periodic slot cavity geometrical morphologies
Jing Zhou(周静), Meng Shen(沈萌), Lan Du(杜澜), Caisong Deng(邓彩松), Haibin Ni(倪海彬), Ming Wang(王鸣). Chin. Phys. B, 2016, 25(9): 097301.
[5] Spin resonance transport properties of a single Au atom in S-Au-S junction and Au-Au-Au junction
Fangyuan Wang(王方原), Guiqin Li(李桂琴). Chin. Phys. B, 2016, 25(7): 077304.
[6] Electromagnetic backscattering from one-dimensional drifting fractal sea surface II:Electromagnetic backscattering model
Tao Xie(谢涛), William Perrie, Shang-Zhuo Zhao(赵尚卓), He Fang(方贺), Wen-Jin Yu(于文金), Yi-Jun He(何宜军). Chin. Phys. B, 2016, 25(7): 074102.
[7] Absorption enhancement and sensing properties of Ag diamond nanoantenna arrays
Yuan Yu-Yang (袁宇阳), Yuan Zong-Heng (袁纵横), Li Xiao-Nan (李骁男), Wu Jun (吴军), Zhang Wen-Tao (张文涛), Ye Song (叶松). Chin. Phys. B, 2015, 24(7): 074206.
[8] First-principles study of structure and nonlinear optical properties of CdHg(SCN)4 crystal
Zhang Peng (张鹏), Kong Chui-Gang (孔垂岗), Zheng Chao (郑超), Wang Xin-Qiang (王新强), Ma Yue (马跃), Feng Jin-Bo (冯金波), Jiao Yu-Qiu (矫玉秋), Lu Gui-Wu (卢贵武). Chin. Phys. B, 2015, 24(2): 024221.
[9] Position-dependent property of resonant dipole—dipole interaction mediated by localized surface plasmon of an Ag nanosphere
Xu Dan (许丹), Wang Xiao-Yun (王小云), Huang Yong-Gang (黄勇刚), Ouyang Shi-Liang (欧阳仕粮), He Hai-Long (何海龙), He Hao (何浩). Chin. Phys. B, 2015, 24(2): 024205.
[10] Charge and spin-dependent thermal efficiency of polythiophene molecular junction in presence of dephasing
Z. Golsanamlou, M. Bagheri Tagani, H. Rahimpour Soleimani. Chin. Phys. B, 2015, 24(10): 108402.
[11] Phonon-dependent transport through a serially coupled double quantum dot system
M. Bagheri Tagani, H. Rahimpour Soleimani. Chin. Phys. B, 2014, 23(5): 057302.
[12] Numerical investigation of the enhanced unidirectional surface plasmon polaritons generator
Zhang Zhi-Dong (张志东), Wang Hong-Yan (王红艳), Zhang Zhong-Yue (张中月), Wang Hui (王辉). Chin. Phys. B, 2014, 23(1): 017801.
[13] A compact frequency selective stop-band splitter by using Fabry–Perot nanocavity in a T-shape waveguide
M Afshari Bavil, Sun Xiu-Dong (孙秀冬). Chin. Phys. B, 2013, 22(4): 047808.
[14] Transport through artificial single-molecule magnets: Spin-pair state sequential tunneling and Kondo effects
Niu Peng-Bin (牛鹏斌), Wang Qiang (王强), Nie Yi-Hang (聂一行). Chin. Phys. B, 2013, 22(2): 027307.
[15] A functional probe with bowtie aperture and bull's eye structure for nanolithograph
Wang Shuo (王硕), Li Xu-Feng (李旭峰), Wang Qiao (王乔), Guo Ying-Yan (郭英楠), Pan Shi (潘石). Chin. Phys. B, 2012, 21(10): 107302.
No Suggested Reading articles found!