Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 074701    DOI: 10.1088/1674-1056/28/7/074701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dramatic change of the self-diffusions of colloidal ellipsoids by hydrodynamic interactions in narrow channels

Han-Hai Li(李瀚海)1,2, Zhong-Yu Zheng(郑中玉)1,2, Tian Xie(谢天)1,2, Yu-Ren Wang(王育人)1,2
1 National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

The self-diffusion problem of Brownian particles under the constraint of quasi-one-dimensional (q1D) channel has raised wide concern. The hydrodynamic interaction (HI) plays an important role in many practical problems and two-body interactions remain dominant under q1D constraint. We measure the diffusion coefficient of individual ellipsoid when two ellipsoidal particles are close to each other by video-microscopy measurement. Meanwhile, we obtain the numerical simulation results of diffusion coefficient using finite element software. We find that the self-diffusion coefficient of the ellipsoid decreases exponentially with the decrease of their mutual distance X when X < X0, where X0 is the maximum distance of the ellipsoids to maintain their mutual influence, X0 and the variation rate are related to the aspect ratio p=a/b. The mean squared displacement (MSD) of the ellipsoids indicates that the self-diffusion appears as a crossover region, in which the diffusion coefficient increases as the time increases in the intermediate time regime, which is proven to be caused by the spatial variations affected by the hydrodynamic interactions. These findings indicate that hydrodynamic interaction can significantly affect the self-diffusion behavior of adjacent particles and has important implications to the research of microfluidic problems in blood vessels and bones, drug delivery, and lab-on-chip.

Keywords:  hydrodynamic interaction      self-diffusion      ellipsoids      channel  
Received:  11 March 2019      Revised:  02 April 2019      Accepted manuscript online: 
PACS:  47.60.-i (Flow phenomena in quasi-one-dimensional systems)  
  47.85.Dh (Hydrodynamics, hydraulics, hydrostatics)  
  47.57.J- (Colloidal systems)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grants Nos. U1738118 and 11372314), the Strategic Priority Research Program on Space Science, the Chinese Academy of Sciences (A) (Grant Nos. XDA04020202 and XDA04020406), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB22040301).

Corresponding Authors:  Zhong-Yu Zheng, Yu-Ren Wang     E-mail:  zzy@imech.ac.cn;yurenwang@imech.ac.cn

Cite this article: 

Han-Hai Li(李瀚海), Zhong-Yu Zheng(郑中玉), Tian Xie(谢天), Yu-Ren Wang(王育人) Dramatic change of the self-diffusions of colloidal ellipsoids by hydrodynamic interactions in narrow channels 2019 Chin. Phys. B 28 074701

[31] Huang B, Wu H, Bhaya D, Grossman A, Granier S, Kobilka B K and Zare R N 2007 Science 315 81
[1] Russel W B, Saville D A and Schowalter W R 1992 Colloidal Dispersions (New York: Cambridge University Press)
[32] Pagés J M, James C E and Winterhalter M 2008 Nat Rev. Microbiol 6 893
[2] Bouchaud J P and Georges A 1990 Phys. Rep. 195 127
[33] Zheng Z and Han Y 2010 J. Chem. Phys. 133 124509
[3] Klafter J and Sokolov I M 2005 Phys. World 18 29
[34] Mazo R M 2002 Brownian Motion: Fluctuations, Dynamics and Applications (Oxford: Oxford University Press)
[4] Wang B, Kuo J and Granick S 2013 Phys. Rev. Lett. 111 208102
[35] Montgomery Jr J A and Berne B J 1977 J. Chem. Phys. 67 4589
[5] Peng Y, Lai L, Tai Y S, Zhang K, Xu X and Cheng X 2016 Phys. Rev. Lett. 116 068303
[6] Reverey J F, Jeon J H, Bao H, Leippe M, Metzler R and Selhuber-Unkel C 2015 Sci. Rep. 5 11690
[7] Zheng X, ten Hagen B, Kaiser A, Wu M, Cui H, Silber-Li Z and Löwen H 2013 Phys. Rev. E 88 032304
[8] HoFling F and Franosch T 2013 Rep. Prog. Phys. 76 046602
[9] Jeon J H, Javanainen M, Martinez-Seara H, Metzler R and Vattulainen I 2016 Phys. Rev. X 6 021006
[10] Omari R A, Aneese A M, Grabowski C A and Mukhopadhyay A 2009 J. Phys. Chem. B 113 8449
[11] Jee A Y, Curtis-Fisk J L and Granick S 2014 Macromolecules 47 5793
[12] Khorasani F B, Poling-Skutvik R, Krishnamoorti R and Conrad J C 2014 Macromolecules 47 5328
[13] De Kort D W, Rombouts W H, Hoeben F J M, Janssen H M, Van As H and van Duynhoven J P M 2015 Macromolecules 48 7585
[14] Valentine M T, Kaplan P D, Thota D, Crocker J C, Gisler T, Prud'homme R K, Beck M and Weitz D A 2001 Phys. Rev. E 64 061506
[15] Banks D S, Tressler C, Peters R D, Höfling F and Fradin C 2016 Soft Matter 12 4190
[16] Karger J and Ruthven D 1992 Diffusion in Zeolites and Other Microporous Solids (New York: Wiley)
[17] Stroock A D, Weck M, Chiu D T, Huck W T S, Kenis P J A, Ismagilov R F and Whitesides G M 2000 Phys. Rev. Lett. 84 3314
[18] Cacciuto A and Luijten E 2006 Phys. Rev. Lett. 96 238104
[19] Li H, Zheng Z and Wang Y 2019 Chin. Phys. Lett. 36 034701
[20] Doi M 1988 The Theory of Polymer Dynamics (Oxford: Oxford University Press)
[21] Happel J and Brenner H 1983 Low Reynolds Number Hydrodynamics (Dordrecht: Kluwer Academic)
[22] Batchelor G K 1976 J. Fluid Mech. 74 1
[23] Cui B, Diamant H and Lin B 2002 Phys. Rev. Lett. 89 188302
[24] Han Y, Alsayed A, Nobili M, Zhang J, Lubensky T C and Yodh A G 2006 Science 314 626
[25] Han Y, Alsayed A, Nobili M and Yodh A G 2009 Phys. Rev. E 80 011403
[26] Sokolov A, Aranson I S, Kessler J O and Goldstein R E 2007 Phys. Rev. Lett. 98 158102
[27] Duggal R and Pasquali M 2006 Phys. Rev. Lett. 96 246104
[28] Cobb P D and Butler J E 2005 J. Chem. Phys. 123 054908
[29] Somasi M, Khomami B, Woo N J, Hur J S and Shaqfeh E S G 2002 J. Non-Newton Fluid 108 227
[30] Mehling M and Tay S 2014 Curr. Opin. Biotechnol. 25 95
[31] Huang B, Wu H, Bhaya D, Grossman A, Granier S, Kobilka B K and Zare R N 2007 Science 315 81
[32] Pagés J M, James C E and Winterhalter M 2008 Nat Rev. Microbiol 6 893
[33] Zheng Z and Han Y 2010 J. Chem. Phys. 133 124509
[34] Mazo R M 2002 Brownian Motion: Fluctuations, Dynamics and Applications (Oxford: Oxford University Press)
[35] Montgomery Jr J A and Berne B J 1977 J. Chem. Phys. 67 4589
[1] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[2] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[3] Performance analysis of quantum key distribution using polarized coherent-states in free-space channel
Zengte Zheng(郑增特), Ziyang Chen(陈子扬), Luyu Huang(黄露雨),Xiangyu Wang(王翔宇), and Song Yu(喻松). Chin. Phys. B, 2023, 32(3): 030306.
[4] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[5] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[6] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[7] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[8] Non-universal Fermi polaron in quasi two-dimensional quantum gases
Yue-Ran Shi(石悦然), Jin-Ge Chen(陈金鸽), Kui-Yi Gao(高奎意), and Wei Zhang(张威). Chin. Phys. B, 2022, 31(8): 080305.
[9] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[10] Switchable and tunable triple-channel bandpass filter
Ming-En Tian(田明恩), Zhi-He Long(龙之河), Li-Jun Feng(冯丽君), Lei-Lei He(贺磊磊), and Tian-Liang Zhang(张天良). Chin. Phys. B, 2022, 31(7): 078401.
[11] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[12] Diffusion of a chemically active colloidal particle in composite channels
Xin Lou(娄辛), Rui Liu(刘锐), Ke Chen(陈科), Xin Zhou(周昕), Rudolf Podgornik, and Mingcheng Yang(杨明成). Chin. Phys. B, 2022, 31(4): 044704.
[13] Spectroscopy and scattering matrices with nitrogen atom: Rydberg states and optical oscillator strengths
Yuhao Zhu(朱宇豪), Rui Jin(金锐), Yong Wu(吴勇), and Jianguo Wang(王建国). Chin. Phys. B, 2022, 31(4): 043103.
[14] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
[15] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
No Suggested Reading articles found!