Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 056501    DOI: 10.1088/1674-1056/28/5/056501
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Conductive property of Zr0.1Fe0.9V1.1Mo0.9O7 with low thermal expansion

Xiaoke He(何小可)1, Heng Qi(戚恒)1, Qi Xu(徐启)1, Xiansheng Liu(刘献省)2, Lei Xu(许磊)1, Baohe Yuan(袁保合)1
1 North China University of Water Resources and Electric Power, Zhengzhou 450011, China;
2 Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China
Abstract  

Low thermal expansion materials are mostly ceramics with low conductive property, which limits their applications in electronic devices. The poor conductive property of ceramic ZrV2O7 could be improved by bi-substitution of Fe and Mo for Zr and V, accompanied with low thermal expansion. Zr0.1Fe0.9V1.1Mo0.9O7 has electrical conductivity of 8.2×10-5 S/cm and 9.41×10-4 S/cm at 291 K and 623 K, respectively. From 291 K to 413 K, thermal excitation leads to the increase of carrier concentration, which causes the rapid decrease of resistance. At 413-533 K, the conductivity is unchanged due to high scattering probability and a slowing increase of carrier concentration. The conductivity rapidly increases again from 533 K to 623 K due to the intrinsic thermal excitation. The thermal expansion coefficient of Zr0.1Fe0.9V1.1Mo0.9O7 is as low as 0.72×10-6 K-1 at 140-700 K from the dilatometer measurement. These properties suggest that Zr0.1Fe0.9V1.1Mo0.9O7 has attractive application in electronic components.

Keywords:  low thermal expansion      conductivity      thermal excitation      electric impedance  
Received:  06 December 2018      Revised:  18 March 2019      Accepted manuscript online: 
PACS:  65.40.De (Thermal expansion; thermomechanical effects)  
  84.32.Ff (Conductors, resistors (including thermistors, varistors, and photoresistors))  
  73.50.Gr (Charge carriers: generation, recombination, lifetime, trapping, mean free paths)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11574276, 51702097, and 11574083), the Program for Innovative Research Team (in Science and Technology) in University of Henan Province, China (Grant No. 16IRTSTHN017), and Henan Science and Technology Development Project, China (Grant No. 182102210241).

Corresponding Authors:  Xiansheng Liu, Baohe Yuan     E-mail:  liuxiansheng69@126.com;yuanbaohe@ncwu.edu.cn

Cite this article: 

Xiaoke He(何小可), Heng Qi(戚恒), Qi Xu(徐启), Xiansheng Liu(刘献省), Lei Xu(许磊), Baohe Yuan(袁保合) Conductive property of Zr0.1Fe0.9V1.1Mo0.9O7 with low thermal expansion 2019 Chin. Phys. B 28 056501

[1] Ge X H, Mao Y C, Li L, Li L P, Yuan N, Cheng Y G, Guo J, Chao M J and Liang E J 2016 Chin. Phys. Lett. 33 046503
[2] Liang Y, Cheng Y G, Ge X H, Yuan B H, Guo J, Sun Q and Liang E J 2017 Chin. Phys. B 26 106501
[3] Wang W L, Meng L J, Li L H, Hu L, Zhou K, Kong Z H and Wei B B 2016 Chin. Phys. Lett. 33 116102
[4] Huang R J, Wu Z X, Chu X X, Yang H H, Chen Z and Li L F 2010 Solid State Sci. 12 1977
[5] Chen D X, Yuan B H, Cheng Y G, Ge X H, Jia Y and Liang E J 2016 Phys. Lett. A 380 4070
[6] Yanase I, Sakai H and Kobayashi H 2017 Mater. Lett. 207 221
[7] Chen J, Wang F F, Huang Q Z, Hu L, Song X P, Deng J X, Yu R B and Xing X R 2013 Sci. Rep. 3 2458
[8] Yao W J, Jiang X X, Huang R J, Li W, Huang C J, Lin Z S, Li L F and Chen C T 2014 Chem. Commun. 50 13499
[9] Withers R L, Evans J S O, Hanson J and Sleight A W 1998 J. Solid State Chem. 137 161
[10] Yuan H L, Yuan B H, Li F and Liang E J 2012 Acta Phys. Sin. 61 226502 (in Chinese)
[11] Sahoo P P, Sumithra S, Madras G and Row T N G 2011 Inorg. Chem. 50 8774
[12] Liu Q Q, Yang J, Sun X J, Cheng X N, Tang H and Li H H 2014 Appl. Surf. Sci. 313 41
[13] Yuan B H, Yuan H L, Song W B, Liu X S, Cheng Y G, Chao M J and Liang E J 2014 Chin. Phys. Lett. 31 076501
[14] Yuan B H, Liu X S, Song W B, Cheng Y G, Liang E J and Chao M J 2014 Phys. Lett. A 378 3397
[15] Yuan B H, Liu X S, Mao Y C, Wang J Q, Guo J, Cheng Y G, Song W B, Liang E J and Chao M J 2016 Mater. Chem. Phys. 170 162
[16] Yuan B H, Cao W S, Ge X H, Cheng Y G, Liu X S and Liang E J 2017 Acta Phys. Sin. 66 076501 (in Chinese)
[17] Yuan B H, He X K, Chen L L, Wang W S, Cheng T and Liang E J 2018 Ceram. Int. 44 21621
[18] Nakajima T, Isobe M, Tsuchiya T, Ueda Y and Manabe T 2010 J. Phys. Chem. C 114 5160
[19] Elkady M F, Alrafaa M A, El Essawy N A and Beni-seuf U 2014 J. Appl. Sci. 3 229
[20] Dong C, Wu F and Chen H 1999 J. Appl. Cryst. 32 850
[21] Zhou Y K, Adams S, Rao R P, Edwards D D, Neiman A and Pestereva N 2008 Chem. Mater. 20 6335
[22] Suzuki T and Omote A 2004 J. Am. Ceram. Soc. 87 1365
[23] Omote A, Yotsuhashi S, Zenitani Y and Yamada Y 2011 J. Am. Ceram. Soc. 94 2285
[24] Yu J M, Chao M J, Li D C and Li M Y 2013 J. Power Sources 226 334
[25] Tripathy A, Das S N, Pradan S K, Bhuuan S and Choudhary R N P 2018 J. Mater. Sci. Mater. Electron. 29 4770
[26] Hsu K Y, Wang C Y and Liu C P 2010 J. Electron. Soc. 157 K109
[27] Ye C, Fang X, Wang M and Zhang L 2006 J. Appl. Phys. 99 063504
[28] Pejova B, Abay B and Bineva I 2010 J. Phys. Chem. C 114 15280
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[5] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[6] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[7] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[8] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[9] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[10] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[11] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[12] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[13] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[14] Vacuum current-carrying tribological behavior of MoS2-Ti films with different conductivities
Lu-Lu Pei(裴露露), Peng-Fei Ju(鞠鹏飞), Li Ji(吉利), Hong-Xuan Li(李红轩),Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), and Jian-Min Chen(陈建敏). Chin. Phys. B, 2022, 31(6): 066201.
[15] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
No Suggested Reading articles found!