Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 054201    DOI: 10.1088/1674-1056/28/5/054201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Loss induced negative refraction and super-prism effect at highly absorptive interface

Jian Wu(吴坚)1,4, Tao Wang(王涛)1, Tianyue Hou(侯天悦)1, Xuefen Kan(阚雪芬)2, Cheng Yin(殷澄)2,3,4, Pu Zhou(周朴)1, Zhuangqi Cao(曹庄琪)3
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China;
2 Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Hohai University, Changzhou 213022, China;
3 College of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
4 Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha 410073, China
Abstract  It is well-established that waves are inhomogeneous in a lossy isotropic medium, and the validation of the classical Snell's law is still questionable for light refraction at the dissipative and dispersive interface. With high absorption, direct experimental investigation is rather difficult due to the extremely short penetration depth; i.e., the skin depth. In this paper, a simple and unified description of this issue is proposed, which can be applied to both materials with anomalous dispersion and in the Drude region. The gradient ▽kω is found to be incident angle θi-dependent, and the direction of the group velocity may deviate significantly from the phase velocity due to the loss induced permittivity structure. The physics behind the negative refraction effect is explained, and a novel loss induced super-prism effect is also predicted.
Keywords:  Snell'      s Law      Drude model      anomalous dispersion      lossy isotropic media  
Received:  09 October 2018      Revised:  16 January 2019      Accepted manuscript online: 
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  41.85.Ct (Particle beam shaping, beam splitting)  
  42.79.Bh (Lenses, prisms and mirrors)  
Fund: Project supported by the China Postdoctoral Science Foundation (Grant No. 2016M601586), the National Natural Science Foundation of China (Grant No. 11404092), and the Opening Funding of Hunan Provincial Key Laboratory of High Energy Laser Technology, China (Grant No. GNJGJS07).
Corresponding Authors:  Jian Wu, Pu Zhou     E-mail:  wujian15203@163.com;zhoupu203@163.com

Cite this article: 

Jian Wu(吴坚), Tao Wang(王涛), Tianyue Hou(侯天悦), Xuefen Kan(阚雪芬), Cheng Yin(殷澄), Pu Zhou(周朴), Zhuangqi Cao(曹庄琪) Loss induced negative refraction and super-prism effect at highly absorptive interface 2019 Chin. Phys. B 28 054201

[1] Jackson J D 1998 Classical Electrodynamics (Hoboken: Wiley) p. 325
[2] Krowne C M and Zhang Y 2007 Physics of Negative Refraction and Negative Index Materials (London: Springer) p. 2
[3] Wu Q X and Zhao S C 2018 Chin. Phys. B 27 68102
[4] Wang L J, Kuzmich A and Dogariu A 2000 Nature 406 277
[5] Berman P R 2002 Phys. Rev. E 66 067603
[6] Gootte J B, Aiello A and Woerdman J P 2008 Opt. Express 16 3961
[7] Born M and Wolf E 1980 Principles of Optics (New York: Pergamon Press) p. 152
[8] Garcia-Pomar J L and Nieto-Vesperinas M 2004 Opt. Express 12 2081
[9] Wu Y, Gu W, Chen Y R, Dai Z H, Zhou W X, Zheng Y X and Chen L Y 2008 Appl. Phys. Lett. 93 071910
[10] He H, Qiu C, Ye L, Cai X, Fan X, Ke M, Zhang F and Liu Z 2018 Nature 560 61
[11] Fedorov V Y and Nakajima T 2014 J. Opt. 16 035103
[12] Chen J and Lu H 2011 Opt. Commun. 284 3802
[13] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Science 334 333
[14] Zang Y, Chen J W and He S Y 2015 Opt. Mater. 46 276
[15] Shen J, Yu H and Lu J 2010 Chin. Opt. Lett. 8 111
[16] Wu Y, Gu W, Chen Y, Li X, Zhu X, Zhou P, Li J, Zheng Y and Chen L 2008 Phys. Rev. E 77 035134
[17] Liu Z, Zheng Y, Yang L, Yang S, Zang K, Zhao H, Zhang R, Wang S, Chen L, Lee Y and Lynch D W 2017 Opt. Mater. 73 247
[18] Cai W and Shalaev V 2010 Optical Metamaterials Fundamentals and Applications (New York: Springer) p. 101
[19] Joannopoulos J D, Johnson S G, Winn J N and Meade R D 2008 Photonic Crystals: Molding the Flow of Light (Princeton: Princeton University Press) p. 27
[1] Criteria for Beverloo's scaling law
Sheng Zhang(张晟), Ping Lin(林平), Guanghui Yang(杨光辉), Jiang-Feng Wan(万江锋), Yuan Tian(田园), Lei Yang(杨磊). Chin. Phys. B, 2019, 28(1): 018101.
[2] Capillary filling in closed-end nanotubes
Chen Zhao(赵晨), Jiajia Zhou(周嘉嘉), Masao Doi. Chin. Phys. B, 2018, 27(2): 024701.
[3] Controllable optical mirror of cesium atoms with four-wave mixing
Zhou Hai-Tao (周海涛), Wang Dan (王丹), Guo Miao-Jun (郭苗军), Gao Jiang-Rui (郜江瑞), Zhang Jun-Xiang (张俊香). Chin. Phys. B, 2014, 23(9): 093204.
[4] Simple statistical model for predicting thermal atom diffusion on crystal surfaces
Yu Wei-Feng (于卫锋), Lin Zheng-Zhe (林正喆), Ning Xi-Jing (宁西京). Chin. Phys. B, 2013, 22(11): 116802.
[5] Study on pulse compression in tapered holey fibres
Ma Wen-Wen(马文文), Li Shu-Guang(李曙光), Yin Guo-Bing(尹国冰), Fu Bo(付博), and Zhang Lei(张磊). Chin. Phys. B, 2010, 19(10): 104208.
[6] Trichromatic phase manipulation of the response of a two-level medium to an arbitrarily intense probe field
Guo Hong-Ju (郭洪菊), Hu Xiang-Ming (胡响明), Li Jing-Yan (李景艳), Li Xiao-Xia (李晓霞), Shi Wen-Xing (石文星), Xu Qing (徐清). Chin. Phys. B, 2006, 15(2): 383-388.
[7] Ultra-narrow bandwidth optical filters consisting of one-dimensional photonic crystals with anomalous dispersion materials
Liu Jiang-Tao (刘江涛), Zhou Yun-Song (周云松), Wang Fu-He (王福合), Gu Ben-Yuan (顾本源). Chin. Phys. B, 2005, 14(12): 2474-2477.
[8] Effects of matrices on Mie scattering in the mid-infrared region
Liu Xiao-Dong (刘晓东), Li Shu-Guang (李曙光), Guo Hong-Lian (郭红莲), Zhang Dao-Zhong (张道中), Li Zhao-Lin (李兆霖), Hou Lan-Tian (侯蓝田). Chin. Phys. B, 2003, 12(10): 1143-1148.
No Suggested Reading articles found!