Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 047601    DOI: 10.1088/1674-1056/28/4/047601
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Reconstruction of vector static magnetic field by different axial NV centers using continuous wave optically detected magnetic resonance in diamond

Jian-Feng Ye(叶剑锋), Zheng Jiao(焦铮), Kun Ma(马堃), Zhi-Yong Huang(黄志永), Hai-Jiang Lv(吕海江), Feng-Jian Jiang(蒋峰建)
School of Information Engineering, Huangshan University, Huangshan 245041, China
Abstract  

We carried out a proof-of-principle demonstration of the reconstruction of a static vector magnetic field involving adjacent three nitrogen-vacancy (NV) sensors with corresponding different NV symmetry axes in a bulk diamond. By means of optical detection of the magnetic resonance (ODMR) techniques, our experiment employs the continuous wave (CW) to monitor resonance frequencies and it extracts the information of the detected field strength and polar angles with respect to each NV frame of reference. Finally, the detected magnetic field relative to a fixed laboratory reference frame was reconstructed from the information acquired by the multi-NV sensor.

Keywords:  diamond defect      optical detection      magnetic resonance      magnetometer  
Received:  27 December 2018      Revised:  25 February 2019      Accepted manuscript online: 
PACS:  76.70.Hb (Optically detected magnetic resonance (ODMR))  
  76.30.Mi (Color centers and other defects)  
  07.55.Ge (Magnetometers for magnetic field measurements)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11305074, 11135002, 11804112, and 11275083), the Key Program of the Education Department Outstanding Youth Foundation of Anhui Province, China (Grant No. gxyqZD2017080), the Natural Science Foundation of Anhui Province, China (Grant No. KJHS2015B09), the Open Fund of Anhui Ley Laboratory for Condensed Matter Physics under Extreme Conditions and CAS Key Laboratory of Microscale Magnetic Resonance (Grant No. KLMMR201804), and the Fund of Scientific Research Platform of Huangshan University.

Corresponding Authors:  Hai-Jiang Lv, Feng-Jian Jiang     E-mail:  luhj9404@mail.ustc.edu.cn;jfjiang@mail.ustc.edu.cn

Cite this article: 

Jian-Feng Ye(叶剑锋), Zheng Jiao(焦铮), Kun Ma(马堃), Zhi-Yong Huang(黄志永), Hai-Jiang Lv(吕海江), Feng-Jian Jiang(蒋峰建) Reconstruction of vector static magnetic field by different axial NV centers using continuous wave optically detected magnetic resonance in diamond 2019 Chin. Phys. B 28 047601

[1] Freeman M R and Choi B C 2014 Phys. Rev. A 90 042104
[2] Budker D and Romalis M 2007 Nat. Phys. 3 227
[3] Greenberg Ya S 1998 Rev. Mod. Phys. 70 175
[4] Grinolds M S, Maletinsky P, Hong S, Lukin M D, Walsworth R L and Yacoby A 2011 Nat. Phys. 7 687
[5] Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys. 89 035002
[6] Bending S J 1999 Adv. Phys. 48 449
[7] Chang A M, Hallen H D, Harriott L, Hess H F, Kao H L, Kwo J, Miller R E, Wolfe R, van der Ziel J and Chang T Y 1992 Appl. Phys. Lett. 61 1974
[8] Balasubramanian G, Neumann P, Twitchen D, Markham M, Kolesov R, Mizuochi N, Isoya J, Achard J, Beck J, Tissler J, Jacques V, Hemmer P R, Jelezko F and Wrachtrup J 2009 Nat. Mater. 8 383
[9] Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Gurudev Dutt M V, Togan E, Zibrov A S, Yacoby A, Walsworth R L and Lukin M D 2008 Nature 455 644
[10] Balasubramanian G, Chan I Y, Kolesov R, Al Hmoud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer P R, Krueger A, Hanke T, Leitenstorfer A, Bratschitsch R, Jelezko F and Wrachtrup J 2008 Nature 455 648
[11] Chang Y R, Lee H Y, Chen K, Chang C C, Tsai D S, Fu C C, Lim T S, Tzeng Y K, Fang C Y, Han C C, Chang H C and Fann W 2008 Nat. Nanotechnol. 3 284
[12] McGuinness L P, Yan Y, Stacey A, Simpson D A, Hall L T, Maclaurin D, Prawer S, Mulvaney P, Wrachtrup J, Caruso F, Scholten R E and Hollenberg L C L 2011 Nat. Nanotechnol. 6 358
[13] de Lange G, Riste D, Dobrovitski V V and Hanson R 2011 Phys. Rev. Lett. 106 080802
[14] Horowitz V R, Aleman B J, Christle D J, Cleland A N and Awschalom D D 2012 Natl. Acad. Sci. USA 109 13493
[15] Hirose M, Aiello C D and Cappellaro P 2012 Phys. Rev. A 86 062320
[16] Pham L M, Bar Gill N, Belthangady C, Le Sage D, Cappellaro P, Lukin M D, Yacoby A and Walsworth R L 2012 Phys. Rev. B 86 045214
[17] Nusran N M and Dutt M V G 2013 Phys. Rev. B 88 220410
[18] Loretz M, Rosskopf T and Degen C L 2013 Phys. Rev. Lett. 110 017602
[19] Le Sage D, Arai K, Glenn D R, DeVience S J, Pham M L, Rahn Lee L, Lukin M D, Yacoby A, Komeili A and Walsworth R L 2013 Nature 496 486
[20] Geiselmann M, Juan M L, Renger J, Say J M, Brown L J, de Abajo F J G, Koppens F and Quidant R 2013 Nat. Nanotechnol. 8 175
[21] Chaudhry Adam Zaman 2014 Phys. Rev. A 90 042104
[22] Chaudhry Adam Zaman 2015 Phys. Rev. A 91 062111
[23] Hall L, Simpson D and Hollenberg L 2013 MRS Bull. 38 162
[24] Hong S, Grinolds M S, Pham L M, Le Sage D, Luan L, Walsworth R L and Yacoby A 2013 MRS Bull. 38 155
[25] Lee S Y, Niethammer M and Wrachtrup J 2015 Phys. Rev. B 92 115201
[26] Jiang F J, Ye J F, Jiao Z, Jiang J, Ma K, Yan X H and Lv H J 2010 Appl. Phys. Lett. 96 092504
[27] Jiang F J, Ye J F, Jiao Z, Huang Z Y and Lv H J 2018 Chin. Phys. B 27 057601
[28] Maertz B, Wijnheijmer A, Fuchs G, Nowakowski M and Awschalom D 2010 Appl. Phys. Lett. 96 092504
[29] Jennifer M Schloss, John F Barry, Matthew J Turner and Ronald L Walsworth 2018 Phys. Rev. Appl. 10 034044
[30] Steinert S, Dolde F, Neumann P, Aird A, Naydenov B, Balasubramanian G, Jelezko F and Wrachtrup J 2010 Rev. Sci. Instrum. 81 043705
[31] Kitazawa Sayaka, Matsuzaki Yuichiro, Soya Saijo, Kakuyanagi Kosuke, Saito Shiro and Ishi-Hayase Junko 2017 Phys. Rev. A 96 042115
[32] Wang P F, Yuan Z H, Huang P, Rong X, Wang M Q, Xu X K, Duan C K, Ju C Y, Shi F Z and Du J F 2015 Nat. Commun. 6 6631
[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] A compact and closed-loop spin-exchange relaxation-free atomic magnetometer for wearable magnetoencephalography
Qing-Qian Guo(郭清乾), Tao Hu(胡涛), Xiao-Yu Feng(冯晓宇), Ming-Kang Zhang(张明康), Chun-Qiao Chen(陈春巧), Xin Zhang(张欣), Ze-Kun Yao(姚泽坤), Jia-Yu Xu(徐佳玉),Qing Wang(王青), Fang-Yue Fu(付方跃), Yin Zhang(张寅), Yan Chang(常严), and Xiao-Dong Yang(杨晓冬). Chin. Phys. B, 2023, 32(4): 040702.
[3] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[4] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[5] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[6] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[7] Gilbert damping in the layered antiferromagnet CrCl3
Xinlin Mi(米锌林), Ledong Wang(王乐栋), Qi Zhang(张琪), Yitong Sun(孙艺彤), Yufeng Tian(田玉峰), Shishen Yan(颜世申), and Lihui Bai(柏利慧). Chin. Phys. B, 2022, 31(2): 027505.
[8] A design of resonant cavity with an improved coupling-adjusting mechanism for the W-band EPR spectrometer
Yu He(贺羽), Runqi Kang(康润琪), Zhifu Shi(石致富), Xing Rong(荣星), and Jiangfeng Du(杜江峰). Chin. Phys. B, 2022, 31(11): 117601.
[9] Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
Kai-Feng Yin(尹凯峰), Ji-Xi Lu(陆吉玺), Fei Lu(逯斐), Bo Li(李博), Bin-Quan Zhou(周斌权), and Mao Ye(叶茂). Chin. Phys. B, 2022, 31(11): 110703.
[10] Angle-dependent spin wave spectra of permalloy ring arrays
Shuxuan Wu(吴书旋), Zengtai Zhu(朱增泰), Yunxu Ma(马云旭), Jinwu Wei(魏晋武), Senfu Zhang(张森富), Jianbo Wang(王建波), and Qingfang Liu(刘青芳). Chin. Phys. B, 2022, 31(11): 117505.
[11] Terahertz magnetic resonance in MnCr2O4 under high magnetic field
Peng Zhang(张朋), Kaibo He(贺凯博), Zheng Wang(王铮), Shile Zhang(张仕乐), Jianming Dai(戴建明), and Fuhai Su(苏付海). Chin. Phys. B, 2022, 31(10): 107502.
[12] Theoretical investigation of ferromagnetic resonance in a ferromagnetic thin film with external stress anisotropy
Jieyu Zhou(周婕妤), Jianhong Rong(荣建红), Huan Wang(王焕), Guohong Yun(云国宏), Yanan Wang(王娅男), and Shufei Zhang(张舒飞). Chin. Phys. B, 2022, 31(1): 017601.
[13] Three-dimensional clogging structures of granular spheres near hopper orifice
Jing Yang(杨敬), Dianjinfeng Gong(宫殿锦丰), Xiaoxue Wang(汪晓雪), Zhichao Wang(王志超), Jianqi Li(李建奇), Bingwen Hu(胡炳文), and Chengjie Xia(夏成杰). Chin. Phys. B, 2022, 31(1): 014501.
[14] Tri-hexagonal charge order in kagome metal CsV3Sb5 revealed by 121Sb nuclear quadrupole resonance
Chao Mu(牟超), Qiangwei Yin(殷蔷薇), Zhijun Tu(涂志俊), Chunsheng Gong(龚春生), Ping Zheng(郑萍), Hechang Lei(雷和畅), Zheng Li(李政), and Jianlin Luo(雒建林). Chin. Phys. B, 2022, 31(1): 017105.
[15] Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2
Lijun Ni(倪丽君), Zhendong Chen(陈振东), Wei Li(李威), Xianyang Lu(陆显扬), Yu Yan(严羽), Longlong Zhang(张龙龙), Chunjie Yan(晏春杰), Yang Chen(陈阳), Yaoyu Gu(顾耀玉), Yao Li(黎遥), Rong Zhang(张荣), Ya Zhai(翟亚), Ronghua Liu(刘荣华), Yi Yang(杨燚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2021, 30(9): 097501.
No Suggested Reading articles found!