Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 045201    DOI: 10.1088/1674-1056/28/4/045201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Numerical study of influence of J×B force on melt layer under conditions relevant to ITER ELMs

Yan Huang(黄艳)1, Ji-Zhong Sun(孙继忠)2, Juan Cai(蔡娟)3, Zhen-Yue Sun(孙振月)2, Chao-Feng Sang(桑超峰)2, De-Zhen Wang(王德真)2
1 School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China;
2 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams(Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China;
3 School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116021, China
Abstract  

The influence of the J×B force on the topographical modification of W targets during a type-I-like ELM in ITER has been studied numerically. A two-dimensional (2D) fluid dynamics model is employed by solving liquid hydrodynamic Navier-Stokes equation with the 2D heat conduction equation in addition to driving forces for surface topography, such as surface tension and pressure gradient, the J×B force is particularly addressed. The governing equations are solved with the finite volume method by adequate prediction of the moving solid-liquid interface. Numerical simulations are carried out for a range of type-I ELM characteristic parameters. Our results indicate that both the surface tension and the J×B force contributes to the melt motion of tungsten plates when the energy flux is under 3000 MW·m-2, the surface tension is a major driving force while the pressure gradient is negligible. Our results also indicate that the J×B force makes the small hills grow at different rates at both the crater edges under a type-I-like ELM heat load with a Gaussian power density profile.

Keywords:  ELMs      tungsten divertor plates      J×B force      melt motion  
Received:  12 November 2018      Revised:  28 January 2019      Accepted manuscript online: 
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  52.55.Rk (Power exhaust; divertors)  
  52.40.Hf (Plasma-material interactions; boundary layer effects)  
  52.65.Kj (Magnetohydrodynamic and fluid equation)  
Fund: 

Project supported by the Scientific Research Foundation of Liaoning Province, China (Grant No. 2016J027), the Open Research Project of Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education (Grant No. KF1705), and the National Key Research and Development Program of China (Grant Nos. 2017YFA0402500, 2017YFE0300400, and 2017YFE0301200).

Corresponding Authors:  Ji-Zhong Sun     E-mail:  jsun@dlut.edu.cn

Cite this article: 

Yan Huang(黄艳), Ji-Zhong Sun(孙继忠), Juan Cai(蔡娟), Zhen-Yue Sun(孙振月), Chao-Feng Sang(桑超峰), De-Zhen Wang(王德真) Numerical study of influence of J×B force on melt layer under conditions relevant to ITER ELMs 2019 Chin. Phys. B 28 045201

[1] Qian X Y, Peng X B, Wang L, Song Y T, Ye M Y, Zhang J W, Li W X and Zhu C C 2016 Nucl. Fusion 56 026010
[2] Gao J M, Liu Y, Li W, Cui Z Y, Zhou Y, Huang Y A and Ji X Q 2010 Chin. Phys. B 19 115201
[3] Lingertat J, Tabasso A, Ali-Arshad S, Alper B, van Belle P, Borrass K, Clement S, Coad J P and Monk R 1997 J. Nucl. Mater. 241-243 402
[4] Xue L, Duan X R, Zheng G Y, Liu Y Q, Yan S L, Dokuka V N, Lukash V E and Khayrutdinov R R 2016 Chin. Phys. Lett. 33 055201
[5] Qiu Q L, Xiao B J, Guo Y, Liu L and Wang Y H 2017 Chin. Phys. B 26 065205
[6] Pitts R A, Bardinb S, Bazylevc B, van den Berg M A, Bunting P, Carpentier-Chouchana S, Coenenf J W, Corre Y, Dejarnac R, Escourbiac F, Gaspar J, Gunng J P, Hirai T, Hong S H, Horacek J, Iglesias D, Kommh M, Krieger K, Lasnier C, Matthews G F, Morgan T W, Panayotis S, Pestchanyi S, Podolnik A, Nygren R E, Rudakov D L, De Temmermana G, Vondracek P and Watkins J G 2017 Nucl. Mater. Energ. 12 60
[7] Federici G, Skinner C H, Brooks J N, Coad J P, Grisolia C, Haasz A A, Hassanein A, Philipps V, Pitcher C S, Roth J, Wampler W R and Whyte D G 2001 Nucl. Fusion 41 1967
[8] Sergienko G, Bazylev B, Huber A, Kreter A, Litnovsky A, Rubel M, Philipps V, Pospieszczyk A, Mertens Ph, Samm U, Schweer B, Schmitz O, Tokar M and Team Textor 2007 J. Nucl. Mater. 363-365 96
[9] Federici G, Andrew P, Barabaschi P, Brooks J, Doerner R, Geier A, Herrmann A, Janeschitz G, Krieger K and Kukushkin A 2003 J. Nucl. Mater. 313-316 11
[10] Federici G, Loarte A and Strohmayer G 2003 Plasma Phys. Control. Fusion 45 1523
[11] Raffray A R and Federici G 1997 J. Nucl. Mater. 244 85
[12] Federici G and Raffray A R 1997 J. Nucl. Mater. 244 101
[13] Hassanein A and Konkashbaev I 2000 Fusion Eng. 51-52 681
[14] Sizyuk V and Hassanein A 2015 Phys. Plasmas 22 013301
[15] Wurz H, Bazylev B, Landman I, Pestchanyi S and Gross S 2001 Fusion Eng. 56-57 397
[16] Bazylev B and Wuerz H 2002 J. Nucl. Mater. 307-311 69
[17] Coenen J W, Bazylev B, Brezinsek S, Philipps V, Hirai T, Kreter A, Linke J, Sergienko G, Pospieszczyk A, Tanabe T, Ueda Y, Samm U and R-Team T E X T O 2011 J. Nucl. Mater. 415 S78
[18] Bazylev B N, Janeschitz G, Landman I S and Pestchanyi S E 2005 Fusion Eng. 75-79 407
[19] Bazylev B N, Janeschitz G, Landman I S, Loarte A and Pestchanyi S E 2007 J. Nucl. Mater. 363-365 1011
[20] Igitkhanov Y and Bazylev B 2014 IEEE Trans. Plasma Sci. 42 2284
[21] Huang Y, Sun J Z, Sang C F, Ding F and Wang D Z 2014 Acta Phys. Sin. 63 035204 (in Chinese)
[22] Huang Y, Sun J Z, Hu W P, Sang C F and Wang D Z 2016 Fusion Eng. 102 28
[23] Miloshevsky G V and Hassanein A 2010 Nucl. Fusion 50 115005
[24] Loarte A, Saibene G, Sartori R, Campbell D, Becoulet M, Horton L, Eich T, Herrmann A, Matthews G, Asakura N, Chankin A, Leonard A, Porter G, Federici G, Janeschitz G, Shimada M and Sugihara M 2003 Plasma Phys. Control. Fusion 45 1549
[25] Jiang C B, Zhang Y L and Ding Z P 2007 Comput. Fluid Mech. (Beijing: China Power Press) p. 211 (in Chinese)
[26] Carslaw H W and Jaeger J C 1959 Conduction of Heat in Solids, 2nd revised edn. (Clarendon: Oxford) pp. 89-91
[27] Behrisch R 2010 J. Surf. Invest-X-Ray + 4 549
[28] Udaykumar H S and Shyy W 1995 Int. J. Heat Mass Tran. 38 2057
[29] Semak V V, Damkroger B and Kempka S 1999 J. Phys. D: Appl. Phys. 32 1819
[30] Sang C F, Guo H Y, Stangeby P C, Lao L and Taylor T S 2017 Nucl. Fusion 57 056043
[31] Sang C F, Stangeby P C, Guo H Y, Leonard A W, Covele B, Lao L L, Moser A L and Thomas D M 2017 Plasma Phys. Control. Fusion 59 025009
[32] Sang C F, Du H L, Zuo G Z, Bonnin X, Sun J Z, Wang L and Wang D Z 2016 Nucl. Fusion 56 106018
[33] Sang C F, Ding R, Bonnin X, Wang L, Wang D Z and Team E A S T 2018 Phys. Plasma 25 072511
[34] Sang C F, Wang Z H, Xu Min, Wang Q, Wang D Z 2018 Fusion Eng. 136 1041
[35] Goldston R J 2012 Nucl. Fusion 52 013009
[36] Eich T, Leonard A W, Pitts R A, Fundamenski W, Goldston R J, Gray T K, Herrmann A, Kirk A, Kallenbach A, Kardaun O, Kukushkin A S, LaBombard B, Maingi R, Makowski M A, Scarabosio A, Sieglin B, Terry J, Thornton A, A S D E X Upgrade Team and Contributorsa A 2013 Nucl. Fusion 53 093031
[37] Garkusha I E, Bazylev B N, Bandura A N, Byrka O V, Chebotarev V V, Landman I S, Kulik N V, Makhlaj V A, Petrov Yu V, Solyakov D G and Tereshin V I 2007 J. Nucl. Mater. 363-365 1021
[38] Bazyle B N, Janeschitz G, Landman I S and Pestchanyi S E 2005 J. Nucl. Mater. 337-339 766
[39] Coenen J W, Philipps V, Brezinsek S, Bazylev B, Kreter A, Hirai T, Laengner M, Tanabe T, Ueda Y, Samm U and TEXTOR Team 2011 Nucl. Fusion 51 083008
[40] Elsholz F, Scholl E, Scharfenorth C, Seewald G, Eichler H J and Rosenfeld A 2005 J. Appl. Phys. 98 103516
[41] Elsholz F, Scholl E and Rosenfeld A 2004 Appl. Phys. Lett. 84 4167
[1] Reduction of impurity confinement time by combined heating of LHW and ECRH in EAST
Zong Xu(许棕), Zhen-Wei Wu(吴振伟), Ling Zhang(张凌), Yue-Heng Huang(黄跃恒), Wei Gao(高伟), Yun-Xin Cheng(程云鑫), Xiao-Dong Lin(林晓东), Xiang Gao(高翔), Ying-Jie Chen(陈颖杰), Lei Li(黎嫘), Yin-Xian Jie(揭银先), Qing Zang(臧庆), Hai-Qing Liu(刘海庆), and EAST team. Chin. Phys. B, 2021, 30(7): 075205.
No Suggested Reading articles found!