Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 035204    DOI: 10.1088/1674-1056/28/3/035204
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Transmission properties of microwave in rectangular waveguide through argon plasma

Xiaoyu Han(韩晓宇)1, Dawei Li(李大伟)2, Meie Chen(陈美娥)1, Zhan Zhang(张展)1, Zheng Li(李铮)1, Yujian Li(李雨键)1, Junhong Wang(王均宏)1
1 Institude of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China;
2 China Academy of Launch Vehicle Technology, Beijing 100076, China
Abstract  

To study the impact of plasma generated by microwave breakdown on the propagation properties of microwave in high power microwave (HPM) devices, a three-dimensional (3-D) fluid model of argon plasma slab in rectangular waveguide is established and calculated by the finite-difference-time-domain (FDTD) method. A rectangular waveguide with a breakdown chamber filled with argon is set as the physics model, and HPM with frequency of 3-50 GHz propagates through this physics model. The time evolutions of the breakdown process are investigated, the reflection, transmission, and absorption coefficients of HPM are calculated, and the influences of some important parameters, including the thickness of the plasma slab and the microwave frequency on the propagation properties of the microwave are shown. Results of this work can offer theoretical instructions for suppressing the influence of breakdown to the performance of HPM devices, and for the use of microwave breakdown, such as the design of plasma limiter or absorber in HPM devices.

Keywords:  high power microwave      argon plasma      propagation properties      finite-difference-time-domain (FDTD) method  
Received:  24 October 2018      Revised:  07 January 2019      Accepted manuscript online: 
PACS:  52.80.Pi (High-frequency and RF discharges)  
  52.65.-y (Plasma simulation)  
  51.50.+v (Electrical properties)  
  52.50.Sw (Plasma heating by microwaves; ECR, LH, collisional heating)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61331002).

Corresponding Authors:  Junhong Wang     E-mail:  wangjunh@bjtu.edu.cn

Cite this article: 

Xiaoyu Han(韩晓宇), Dawei Li(李大伟), Meie Chen(陈美娥), Zhan Zhang(张展), Zheng Li(李铮), Yujian Li(李雨键), Junhong Wang(王均宏) Transmission properties of microwave in rectangular waveguide through argon plasma 2019 Chin. Phys. B 28 035204

[1] Zhao P C, Guo L X and Shu P P 2016 Phys. Plasmas 23 092105
[2] Xiao W and Huang K M 2016 IEEE Trans. Plasma Sci. 44 1075
[3] Kim H C and Verboncoeur J P 2007 Comput. Phys. Commun. 177 118
[4] Hu B J, Wei G, and Lai S L 1999 IEEE Trans. Plasma Sci. 27 1131
[5] Qian C, Ding D Z, Fan Z H and Chen R S 2015 Phys. Plasmas 22 032111
[6] Ji J Z, Ma Y P and Guo N 2018 Optik 165 240
[7] Robert and Vidmar 1990 IEEE Trans. Plasma Sci. 18 733
[8] Qian C, Ding D Z, Bi J J and Chen R S 2016 IEEE Microwave and Wireless Components Letters 26 77
[9] Mankowski J, Hemmert D, Neuber A and Krompholz H 2002 IEEE Trans. Plasma Sci. 30 102
[10] Laroussi M and Roth J R 1993 IEEE Trans. Plasma Sci. 21 366
[11] Tang D L, Sun A P, Qiu X M and Chu P K 2003 IEEE Trans. Plasma Sci. 31 405
[12] Jazi B and Mehdiam H 2004 Plasma Phys. Control. Fusion 46 507
[13] Zhao P C, Liao C and Lin W 2011 J. Electromagn. Waves Appl. 25 2365
[14] Zhao P C, Liao C, Lin W B, Chang L and Fu H J 2011 Phys. Plasmas 18 102111
[15] Zhao P C, Guo L X and Li H M 2015 Chin. Phys. B 24 105102
[16] Fu Y Y, Verboncoeur J P, Christlieb A J and Wang X X 2017 Phys. Plasmas 24 083516
[17] Fu Y Y, Luo H Y, Zou X B and Wang X X 2014 IEEE Trans. Plasma Sci. 42 1544
[18] Zhang L, He F, Li S C and Ouyang J T 2013 Chin. Phys. B 22 125202
[19] Nam S K and Verboncoeur J P 2008 Appl. Phys. Lett. 92 231502
[20] Nam S K and Verboncoeur J P 2008 Appl. Phys. Lett. 93 151504
[21] Krasik S, Alpert D and McCoubrey O 1949 Phys. Rev. 76 722
[22] MacDonald A 1966 Microwave Breakdown in Gases (New York: Wiley)
[23] Soliman E A, Helaly A and Megahed A A 2007 Prog. Electromagn. Res. 67 25
[1] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
[2] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[3] Propagation properties of radially polarized Pearcey-Gauss vortex beams in free space
Xinpeng Chen(陈鑫鹏), Chuangjie Xu(许创杰), Qian Yang(杨芊), Zhiming Luo(罗智明), Xixian Li(李希贤), Dongmei Deng(邓冬梅). Chin. Phys. B, 2020, 29(6): 064202.
[4] A compact dual-band radiation system
Yuan-Qiang Yu(于元强), Yu-Wei Fan(樊玉伟), and Xiao-Yu Wang(王晓玉)$. Chin. Phys. B, 2020, 29(11): 118402.
[5] Modes decomposition in particle-in-cell software CEMPIC
Aiping Fang(方爱平)†, Shanshan Liang(梁闪闪), Yongdong Li(李永东), Hongguang Wang(王洪广), and Yue Wang(王玥). Chin. Phys. B, 2020, 29(10): 100205.
[6] A low-outgassing-rate carbon fiber array cathode
An-Kun Li(李安昆), Yu-Wei Fan(樊玉伟), Bao-Liang Qian(钱宝良), Zi-Cheng Zhang(张自成), Tao Xun(荀涛). Chin. Phys. B, 2018, 27(2): 028401.
[7] Air breakdown induced by the microwave with two mutually orthogonal and heterophase electric field components
Pengcheng Zhao(赵朋程), Lixin Guo(郭立新). Chin. Phys. B, 2017, 26(9): 099201.
[8] Damage effect and mechanism of the GaAs high electron mobility transistor induced by high power microwave
Yang Liu(刘阳), Chang-Chun Chai(柴常春), Yin-Tang Yang(杨银堂), Jing Sun(孙静), Zhi-Peng Li(李志鹏). Chin. Phys. B, 2016, 25(4): 048504.
[9] Simulation and experimental study of high power microwave damage effect on AlGaAs/InGaAs pseudomorphic high electron mobility transistor
Yu Xin-Hai (于新海), Chai Chang-Chun (柴常春), Liu Yang (刘阳), Yang Yin-Tang (杨银堂), Xi Xiao-Wen (席晓文). Chin. Phys. B, 2015, 24(4): 048502.
[10] Hardening measures for bipolar transistor against microwave-induced damage
Chai Chang-Chun (柴常春), Ma Zhen-Yang (马振洋), Ren Xing-Rong (任兴荣), Yang Yin-Tang (杨银堂), Zhao Ying-Bo (赵颖博), Yu Xin Hai (于新海). Chin. Phys. B, 2013, 22(6): 068502.
[11] Pulsed microwave damage trend of bipolar transistor as a function of pulse parameters
Ma Zhen-Yang (马振洋), Chai Chang-Chun (柴常春), Ren Xing-Rong (任兴荣), Yang Yin-Tang (杨银堂), Zhao Ying-Bo (赵颖博), Qiao Li-Ping (乔丽萍 ). Chin. Phys. B, 2013, 22(2): 028502.
[12] HEM11 mode magnetically insulated transmission[2mm] line oscillator: simulation and experiment
Wang Dong (王冬), Qin Fen (秦奋), Wen Jie (文杰), Chen Dai-Bing (陈代兵), Jin Xiao (金晓), An Hai-Shi (安海狮), Zhang Xin-Kai (张新凯 ). Chin. Phys. B, 2012, 21(8): 084101.
[13] Experimental investigation of a compact relativistic magnetron with axial TE11 mode radiation
Li Wei (李伟), Liu Yong-Gui (刘永贵), Shu Ting (舒挺), Qian Bao-Liang (钱宝良 ). Chin. Phys. B, 2012, 21(8): 088401.
[14] Effects of microwave pulse-width damage on a bipolar transistor
Ma Zhen-Yang(马振洋), Chai Chang-Chun(柴常春), Ren Xing-Rong(任兴荣), Yang Yin-Tang(杨银堂), Chen Bin(陈斌), and Zhao Ying-Bo(赵颖博) . Chin. Phys. B, 2012, 21(5): 058502.
[15] Propagation of cylindrical vector beams in a turbulent atmosphere
Pu Ji-Xiong(蒲继雄), Wang Tao(王涛), Lin Hui-Chuan(林惠川), and Li Cheng-Liang(李成良). Chin. Phys. B, 2010, 19(8): 089201.
No Suggested Reading articles found!