Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 034209    DOI: 10.1088/1674-1056/28/3/034209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles

Geeta Yadav, Govind Pathak, Kaushlendra Agrahari, Mahendra Kumar, Mohd Sajid Khan, V S Chandel, Rajiv Manohar
Liquid Crystal Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, India
Abstract  

This study investigates the effect of magnetic nanoparticles (NPs) on the weakly polar nematic liquid crystal (NLC). Different parameters of dielectric data were measured for both the homeotropic and planar aligned samples as a function of frequency and temperature and the substantial changes have been noticed for the doped systems. Dielectric permittivity has been increased after the dispersion of magnetic NPs in the pure NLC. Dielectric anisotropy has also been influenced by incorporating the magnetic NPs with the NLC molecules. These results were attributed to the dipole-dipole interaction between the magnetic nanoparticles and nematic liquid crystal molecules. Electro-optical study indicated the faster rise time and fall time of the doped systems as compare to pure NLC. Threshold voltage has been calculated and found to be decreased for the doped systems. Moreover, we have also calculated the rotational viscosity and the splay elastic constant for pure and the doped systems. Both the rotational viscosity and splay elastic constant of the doped systems are found to be considerably lower than those of pure NLC. Change in these properties has been explained on the basis of molecular disturbances created by the interaction between the magnetic nanoparticle and LC director. This study reveals that the inclusion of magnetic NPs in weakly polar NLC can be useful to enhance the basic properties of the weakly polar NLC and make it a promising material for many display applications.

Keywords:  magnetic nanoparticles      dielectric permittivity      response time      rotational viscosity  
Received:  07 October 2018      Revised:  23 January 2019      Accepted manuscript online: 
PACS:  42.70.Df (Liquid crystals)  
Corresponding Authors:  Rajiv Manohar     E-mail:  rajiv.manohar@gmail.com

Cite this article: 

Geeta Yadav, Govind Pathak, Kaushlendra Agrahari, Mahendra Kumar, Mohd Sajid Khan, V S Chandel, Rajiv Manohar Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles 2019 Chin. Phys. B 28 034209

[1] Yadav S P, Pandey K K, Misra A K and Manohar R 2011 Acta Phys. Pol. A 119 824
[2] Vimal T, Singh D P, Gupta S K, Pandey S, Agrahari K and Manohar R 2016 Phase Transition 89 632
[3] Kumar J, Gupta R K, Kumar S and Manjuladevi 2015 Macromol. Symp. 357 47
[4] Pandey S, Gupta S K, Singh D P, Vimal T, Tripathi P K, Srivastava A and Manohar R 2014 Polym. Eng. Science. 55
[5] Zakerhamidi M S, Majles Ara M H and Makeli A 2013 J. Mol. Liq. 181 77
[6] de Gennes P G 1974 The Physics of Liquid Crystals (London: Oxford University)
[7] Yadav S P, Pandey S P, Mishra A K, Dixit S and Manohar R 2011 Can. J. Phys. 89 661
[8] Pandey K K, Mishra S and Manohar R 2015 Appl. Nanosci. 5 14
[9] Sinha G, Oka A and Glorieux C 2004 J. Thoen. Liq. Cryst. 31 1123
[10] Lobo V C, Prasad S K and Yelamaggad C V 2006 J. Phys.: Condens. Matter. 18 767
[11] Wang X, Pu S, Ji H and Yu G 2012 Nanoscale Res. Lett. 7 249
[12] Faten A H, Ahmed A A G, Noruh A S, Fowzia A and Fahrettin Y 2014 J. Mol. Liq. 190 169
[13] Koo W S, Chung H K, Park H G, Han J J, Jeong N C, Cho M J, Kin D H and Seo D S J 2014 Nanosci. Nanotechnology 14 8609
[14] Rahman M and Lee W 2009 J. Phys. 42 063001
[15] Basu R and Iannacchione G S 2009 Phys. Rev. E 80 010701
[16] Rasna M V, Zuhail K P, Manda R, Paik P, Haase W and Dhara S 2014 Phys. Rev. E 89 052503
[17] Brochard F and de Gennes P G 1970 J. Phys. 31 691
[18] Tomasoviciva N, Timko M, Zavisova V, Hashim A, Jadzyn J, Chaud X, Veaugnon E and Kopcansky P 2014 Int. J. Thermo Phys. 35 2044
[19] Gorkunov M V and Osipov M A 2011 Soft Matter. 7 4348
[20] Rault J, Cladis P E and Burger J P 1970 Ferronematics Phys. Lett. A 32 199
[21] Mertelj A, Lisjak D, Drofenik M and Copic M 2013 Nature. 504 237
[22] Cushing B L, Kolesnichenko V L and O'Connor C J 2004 Chem. Rev. 104 3893
[23] Sahoo R, Rasna M V, Lisjak D, Mertelj A and Dhara S 2015 App. Phys. Lett. 106 161905
[24] Ye W, Yuan R, Dai Y, Gao L, Pang Z, Zhu J, Meng X, He Z, Li J, Cai M, Wang X and Xing H 2018 Nanomaterials 8
[25] Pathak G, Katiyar R, Agrahari K, Srivastava A, Dabrowski R, Garbat K and Manohar R 2018 Opto-Electron. Review. 26 11
[26] Tripathi P K, Pande M and Singh S 2016 Appl. Phys. A 122 847
[27] Utsumi Y, Kamei T, Naito R and Saito K 2008 Liq. Cryst. 434 337
[28] Maleki A, Maljes M H and Saboohi F 2017 Phase Transition 90 371
[29] Kuksenok O V, Ruhwandl R W and Shiyanovskii S V 1996 Phys. Rev. E 54 5198
[30] Andrienko D, Germano G and Allen M P 2001 Phys. Rev. E 63 41701
[31] Maier W and Meier G 1961 Z. Naturforsch. 16a 262
[32] Blinov L M and Chigrinov V G 1994 Electrooptic Effects in Liquid Crystal Materials (New York: Springer-Verlag)
[1] Microstructural, magnetic and dielectric performance of rare earth ion (Sm3+)-doped MgCd ferrites
Dandan Wen(文丹丹), Xia Chen(陈霞), Dasen Luo(骆大森), Yi Lu(卢毅),Yixin Chen(陈一鑫), Renpu Li(黎人溥), and Wei Cui(崔巍). Chin. Phys. B, 2022, 31(7): 078503.
[2] Strong-field response time and its implications on attosecond measurement
Chao Chen(陈超), Jiayin Che(车佳殷), Xuejiao Xie(谢雪娇), Shang Wang(王赏), Guoguo Xin(辛国国), and Yanjun Chen(陈彦军). Chin. Phys. B, 2022, 31(3): 033201.
[3] Comprehensive studies on dielectric properties of p-methoxy benzylidene p-decyl aniline with function of temperature and frequency in planar geometry: A potential nematic liquid crystal for display devices
Pankaj Kumar Tripathi, Kunwar Vikram, Mithlesh Tiwari, and Ajay Shriram. Chin. Phys. B, 2021, 30(6): 064208.
[4] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[5] Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes
Xiang Yu(俞翔), Yan Mi(米岩), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(1): 017503.
[6] Functionalized magnetic nanoparticles for drug delivery in tumor therapy
Ruo-Nan Li(李若男), Xian-Hong Da(达先鸿), Xiang Li (李翔), Yun-Shu Lu(陆云姝), Fen-Fen Gu(顾芬芬), and Yan Liu(刘艳). Chin. Phys. B, 2021, 30(1): 017502.
[7] Second harmonic magnetoacoustic responses of magnetic nanoparticles in magnetoacoustic tomography with magnetic induction
Gepu Guo(郭各朴), Ya Gao(高雅), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2020, 29(3): 034302.
[8] Flexible rGO/Fe3O4 NPs/polyurethane film with excellent electromagnetic properties
Wei-Qi Yu(余维琪), Yi-Chen Qiu(邱怡宸), Hong-Jun Xiao(肖红君), Hai-Tao Yang(杨海涛), Ge-Ming Wang(王戈明). Chin. Phys. B, 2019, 28(10): 108103.
[9] Effect of particle size distribution on magnetic behavior of nanoparticles with uniaxial anisotropy
S Rizwan Ali, Farah Naz, Humaira Akber, M Naeem, S Imran Ali, S Abdul Basit, M Sarim, Sadaf Qaseem. Chin. Phys. B, 2018, 27(9): 097503.
[10] Simulation research on effect of magnetic nanoparticles on physical process of magneto-acoustic tomography with magnetic induction
Xiao-Heng Yan(闫孝姮), Ying Zhang(张莹), Guo-Qiang Liu(刘国强). Chin. Phys. B, 2018, 27(10): 104302.
[11] Lattice dynamics properties of chalcopyrite ZnSnP2: Density-functional calculations by using a linear response theory
You Yu(虞游), Yu-Jing Dong(董玉静), Yan-Hong Shen(沈艳红), Guo-Dong Zhao(赵国栋), Xiao-Lin Zheng(郑小林), Jia-Nan Sheng(盛佳南). Chin. Phys. B, 2017, 26(4): 046302.
[12] Field-induced phase transitions in chiral smectic liquid crystals studied by the constant current method
H Dhaouadi, R Zgueb, O Riahi, F Trabelsi, T Othman. Chin. Phys. B, 2016, 25(5): 057704.
[13] Radio-frequency-heating capability of silica-coated manganese ferrite nanoparticles
Qiu Qing-Wei (邱庆伟), Xu Xiao-Wen (徐晓文), He Mang (何芒), Zhang Hong-Wang (张洪旺). Chin. Phys. B, 2015, 24(6): 067503.
[14] Novel attributes and design considerations of effective oxide thickness in nano DG MOSFETs
Morteza Charmi. Chin. Phys. B, 2015, 24(4): 047302.
[15] Surface modification of magnetic nanoparticles in biomedicine
Chu Xin (储鑫), Yu Jing (余靓), Hou Yang-Long (侯仰龙). Chin. Phys. B, 2015, 24(1): 014704.
No Suggested Reading articles found!