Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 017501    DOI: 10.1088/1674-1056/28/1/017501
Special Issue: TOPICAL REVIEW — Magnetism, magnetic materials, and interdisciplinary research
TOPICAL REVIEW—Magnetism, magnetic materials, and interdisciplinary research Prev   Next  

Sm–Co high-temperature permanent magnet materials

Shiqiang Liu(刘世强)
240 Jackson Ave., Braselton, GA 30517, USA
Abstract  Permanent magnets capable of reliably operating at high temperatures up to ~450℃ are required in advanced power systems for future aircrafts, vehicles, and ships. Those operating temperatures are far beyond the capability of Nd– Fe–B magnets. Possessing high Curie temperature, Sm–Co based magnets are still very important because of their hightemperature capability, excellent thermal stability, and better corrosion resistance. The extensive research performed around the year 2000 resulted in a new class of Sm2(Co, Fe, Cu, Zr)17-type magnets capable of operating at high temperatures up to 550℃. This paper gives a systematic review of the development of Sm–Co permanent magnets, from the crystal structures and phase diagrams to the intrinsic magnetic properties. An emphasis is placed on Sm2(Co, Fe, Cu, Zr)17-type magnets for operation at temperatures from 300℃ to 550℃. The thermal stability issues, including instantaneous temperature coefficients of magnetic properties, are discussed in detail. The significance of nanograin structure, nanocrystalline, and nanocomposite Sm–Co magnet materials, and prospects of future rare-earth permanent magnets are also given.
Keywords:  Sm-Co      Sm2(Co,Fe,Cu,Zr)17      high-temperature magnets      nanocomposite  
Received:  29 November 2018      Revised:  25 December 2018      Accepted manuscript online: 
PACS:  75.50.Ww (Permanent magnets)  
  75.50.-y (Studies of specific magnetic materials)  
Corresponding Authors:  Shiqiang Liu     E-mail:  eaaliu@yahoo.com

Cite this article: 

Shiqiang Liu(刘世强) Sm–Co high-temperature permanent magnet materials 2019 Chin. Phys. B 28 017501

[1] Fingers R T and Rubertus C S 2000 IEEE Trans. Magn. 36 3373
[2] Nesbitt E A, Wernick J H and Corenzwit E 1959 J. Appl. Phys. 30 365
[3] Hubbard W M, Adams E and Gilfrich J Y 1960 J. Appl. Phys. 31 368S
[4] Hoffer G and Strnat K 1966 IEEE Trans. Magn. 2 487
[5] Strnat K J and Hoffer G 1965 US Air Force Materials Lab. Technical Report AFML-TR-65
[6] Strnat K, Hoffer G, Olson J, Ostertag W and Becker J J 1967 J. Appl. Phys. 38 1001
[7] Strnat K, Oison J C and Hoffer G 1968 J. Appl. Phys. 39 1263
[8] Nesbitt E A, Willens R C, Shrwood R C, Buehler E and Wernick J H 1968 Appl. Phys. Letter 12 361
[9] Strnat K J, Hoffer G I, Olson J C and Kubach R W 1968 IEEE Trans. Magn. 4 255
[10] Velge W A J J and Buschow K H J 1968 J. Appl. Phys. 39 1717
[11] Becker J J 1968 IEEE Trans. Magn. 4 239
[12] Buschow K H J, Luiten W, Naastepad P A and Westendorp F F 1968 Philips Tech. Rev. 29 336
[13] Buschow K H J, Luiten W and Westendorp F F 1969 J. Appl. Phys. 40 1309
[14] Das D K 1969 IEEE Trans. Magn. 5 214
[15] Nesbitt E A, Chin G Y, Sherwood R C and Wernick J H 1969 J. Appl. Phys. 40 4006
[16] Benz M G and Martin D L 1970 Appl. Phys. Lett. 17 176
[17] Martin D L and Benz M G 1971 Cobalt 11 50
[18] Strnat K, Hoffer G, Ostertag W and Olson J C 1966 J. Appl. Phys. 37 1252
[19] Ray A E and Strnat K J 1971 US Air Force Materials Lab. Technical Report AFML-TR-71-53
[20] Ray A E and Strnat K J 1971 US Air Force Materials Lab. Technical Report AFML-TR-71-210
[21] Ray A E and Strnat K J 1972 US Air Force Materials Lab. Technical Report AFML-TR-72-99
[22] Ray A E and Strnat K J 1973 US Air Force Materials Lab. Technical Report AFML-TR-73-112
[23] Ray A E and Strnat K J 1973 US Air Force Materials Lab. Technical Report AFML-TR-73-276
[24] Ray A E and Strnat K J 1972 Proc. 7th Rare Earth Metals Conf., A. A. Baikov Institute of Metals, Moscow, Russia, p. 75
[25] Mildrum H F, Hartings M S, Strnat K J and Tront J G 1973 AIP Conf. Proc. 10 618
[26] Senno H and Tawara Y 1974 IEEE Trans. Magn. 10 313
[27] Tawara Y and Senno H 1976 Proc. 2nd Int’l Workshop on REPM, Dayton, Ohio, USA, p. 340
[28] Nagel H 1976 AIP Conf. Proc. 29 603
[29] Ojima T, Tomizawa S, Yoneyama T and Hori T 1977 IEEE Trans. Magn. 13 1317
[30] Ojima T, Tomizawa S, Yoneyama T and Hori T 1977 Jpn. J. Appl. Phys. 16 671
[31] Yoneyama T, Fukuno A and Ojima T 1979 Proc. 4th Int’l Workshop on REPM, Hakone, Japan, p. 407
[32] Mishra R K, Thomas G, Yoneyama T, Fukuno A and Ojima T 1981 J. Appl. Phys. 52 2517
[33] Liu S and Ray A E 1989 IEEE Trans. Magn. 25 3785
[34] Moffatt 1990 Binary Alloy Phase Diagrams (2nd Ed.) Vol. 2 p. 1241
[35] Khan Y 1974 Proc. 11th Rare Earth Res. Conf., vol. Ⅱ p. 652
[36] Buschow K H J and Goot A S van der 1968 J. Less Common Met. 14 323
[37] Strnat K J 1988 Rare Earth-Cobalt Permanent Magnets Ferromagnetic Mater. (Elservier Science Publishers B. V.) Vol. 4 pp. 145–148, 154, 186, 195
[38] Skomski R and Coey J M D 1999 Permanent Magnetism (Bristol: Institute of Physics Publishing Ltd.) p. 136
[39] Poudyal N and Liu J P 2013 J. Phys. D: Appl. Phys. 46 043001
[40] Fidler J, Schrefl T, Hoefinge S and Hajduga M 2004 J. Phys.: Condens. Matter 16 S455
[41] Narasimhan K S V L, Wallace W E and Hutchens R D 1974 IEEE Trans. Magn. 10 729
[42] Narasimhan K S V L and Wallace W E 1977 IEEE Trans. Magn. 13 1333
[43] Campbell P 1996 Permanent Magnet Materials and Their Applications (Cambridge: Cambridge University Press) p. 51
[44] Ray A E and Strnat K J 1972 IEEE Trans. Magn. 8 516
[45] Ray A E 1984 J. Appl. Phys. 55 2094
[46] Livingston J D and Martin D L 1977 J. Appl. Phys. 48 2608
[47] Liu S, Yang J, Doyle G, Kuhl G E, Chen C, Walmer M S and Walmer M H 1999 IEEE Trans. Magn. 35 3325
[48] Walmer M S, Chen C H, Walmer M H, Liu S and Kuhl E 2000 Proc. 16th Int’l Workshop on REPM, The Japan Institute of Metal, p. 41
[49] Liu S, Potts G, Doyle G, Yang J, Kuhl G E, Chen C, Walmer M S and Walmer M H 2000 IEEE Trans. Magn. 36 3297
[50] Chen C H, Huang M Q, Foster J E, Monnette G, Middleton J, Higgins A and Liu S 2006 Surf. & Coatings Techn. 201 3430
[51] Liu J, Vora P, Dent P, Walmer M, Chen C, Talnagi J, Wu S and Harmer M 2007 Proc. Space Nucl. Conf. p. 2036
[52] Liu J F, Chui T, Dimitrovv D and Hadjipanayis G C 1998 Appl. Phys. Lett. 73 3007
[53] Popov A G, Korolev A V and Shchegoleva N N 1990 Phys. Met. Mrtall. 69 100
[54] Liu S 2005 Handbook of advanced Magnetic Materials Vol. 4 (Beijing: Tsinghua University Press & Springer) p. 41
[55] Wecker J, Katter M and Schultz L 1991 J. Appl. Phys. 69 6058
[56] Chen S K, Tsai J L and Chin T S 1996 J. Appl. Phys. 79 5964
[57] Cui B Z, Huang M Q, Liu S 2003 IEEE Trans. Magn. 39 2866
[58] Lee D, Hilton J S, Liu S, Zhang Y, Hadjipanayis G C and Chen C H 2003 IEEE Trans. Magn. 39 2947
[59] Liu S, Lee D, Huang M Q, Higgins A, Shen Y, He Y and Chen C 2006 Proc. 19th Int’l Workshop on REPM, Beijing, China, p. 123
[60] Huang M Q, Turgut Z, Chen Z M, Shen Y H, Lee D, Higgins A, Chen C H, Liu S, Liu J F, Horwah J C and Fingers R T 2009 J. Appl. Phys. 105 123915
[61] Gabay A M, Zhang Y and Hadjipanayis G C 2005 J. Magn. Magn. Mater. 294 287
[62] Yue M, Zuo J H, Liu W Q, Lv W C, Zhang D T, Zhang J X, Guo Z H and Li W 2011 J. Appl. Phys. 109 07A711
[63] Wang Y P, Li Y, Rong C B and Liu J P 2007 Nanotechnology 18 465701
[64] Cui B Z, Li W F and Hadjipanayis G C 2011 Acta Mater. 59 563
[65] Shen Y, Leontsev S O, Turgut Z, Lucas M S, Sheets A O and Horwath J C 2013 IEEE Trans. Magn. 49 3244
[66] Buschow K H J, Dc D B and Coehoorn R 1988 J. Less-Common Met. 145 601
[67] Coehoorn R, Mooij D B and de C 1989 J. Magn. Magn. Matter 80 101
[68] Chin T 2000 J. Magn. Magn. Mater. 209 75
[69] Morisako A, Kato I, Takei S and Liu X 2006 J. Magn. Magn. Mater. 303 e274
[70] Sayama J, Mizutani K, Asahi T, Ariake J and Ouchi K 2006 J. Magn. Magn. Mater. 301 271
[71] Sayama J, Mizutani K, Asahi T and Osaka T 2004 Appl. Phys. Lett. 85 5640
[72] Ohtakea M, Nukagaa Y, Kirinob F and Futamotoa M 2009 J. Cryst. Growth 311 2251
[73] Hansen M and Anderko K 1958 Constitution Binary Alloys (New York: McGraw-Hill Book Company Inc.) p. 449
[74] Ray A E, Strnat K and Feldmann D 1963 Proc. 3rd Conf. on RE Research, Clearwater, FL, US, p. 443
[75] Strnat K, Hoffer G and Ray A E 1966 IEEE Trans. Magn. 2 489
[76] Ray A E 1968 Proc. 7rd Conf. on RE Research, Coronado, CA, USA, Ⅱ p. 473
[77] Strnat K J and Salmans L R 1968 US Air Force Materials Lab. Technical Report AFML-TR-68
[78] Clark A E 1973 Appl. Phys. Lett. 23 642
[79] Croat J J 1980 Appl. Phys. Lett. 37 1096
[80] Croat J J 1981 Appl. Phys. Lett. 39 357
[81] Croat J J 1982 J. Appl. Phys. 53 3161
[82] Croat J J 1982 IEEE Trans. Magn. 18 1442
[83] Koon N C Williams C M and Das B N 1981 J. Appl. Phys. 52 2535
[84] Koon N C and Das B N 1981 Appl. Phys. Lett. 39 840
[85] Hadjipanayis G C, Hazelton R C and Lawless K R 1983 Appl. Phys. Lett. 43 797
[86] Hadjipanayis G C, Hazelton R C and Lawless K R 1984 J. Appl. Phys. 55 2073
[87] Stadelmaier H H and Park H K 1981 Z. Metallkd. 72 417
[88] Sagawa M, Fujimura S, Togawa N, Yamamoto H and Matsuura Y 1984 J. Appl. Phys. 55 2083
[89] Coey J M D and Hong S 1990 J. Magn. Magn. Matter 87 L251
[90] Miller A, D’Silva T and Rodringues H 1976 IEEE Trans. Magn. 12 1006
[91] Liu S, Huang M Q, Shen Y, Higgins A, Lee D and He Y 2008 Proc. 20th Int’l Workshop on REPM, Knossos-Crete, Greece, p. 195
[92] Narasimhan K S V L 1976 IEEE Trans. Magn. 12 1009
[93] Liu S and Lee D 2004 Proc 2004 China Magnet Symposium Xi’an, China, p. 77
[94] Sawatzki S, Heller R, Mickel Ch, Seifert M, Schultz L and Neu V 2011 J. Appl. Phys. 109 123922
[95] Yang Y, Ge S, Zhang X, Kong L, Pan Q, Hou Y, Huang S and Yang L 1990 Proc 6th Int’l Symposium on Anisotropy and Coercivity in RETM, Pittsburgh, PA, USA, p. 190
[1] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[2] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[3] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[4] Effect of Mo doping on phase change performance of Sb2Te3
Wan-Liang Liu(刘万良), Ying Chen(陈莹), Tao Li(李涛), Zhi-Tang Song(宋志棠), and Liang-Cai Wu(吴良才). Chin. Phys. B, 2021, 30(8): 086801.
[5] Micromagnetism simulation on effects of soft phase size on Nd2Fe14B/α–Fe nanocomposite magnet with soft phase imbedded in hard phase
Yu-Qing Li(李玉卿), Ming Yue(岳明), Yi Peng(彭懿), Hong-Guo Zhang(张红国). Chin. Phys. B, 2018, 27(8): 087502.
[6] Silica encapsulated ZnO quantum dot-phosphor nanocomposites: Sol-gel preparation and white light-emitting device application
Ya-Chuan Liang(梁亚川), Kai-Kai Liu(刘凯凯), Ying-Jie Lu(卢英杰), Qi Zhao(赵琪), Chong-Xin Shan(单崇新). Chin. Phys. B, 2018, 27(7): 078102.
[7] Enhanced photoresponse performance in Ga/Ga2O3 nanocomposite solar-blind ultraviolet photodetectors
Shu-Juan Cui(崔书娟), Zeng-Xia Mei(梅增霞), Yao-Nan Hou(侯尧楠), Quan-Sheng Chen(陈全胜), Hui-Li Liang(梁会力), Yong-Hui Zhang(张永晖), Wen-Xing Huo(霍文星), Xiao-Long Du(杜小龙). Chin. Phys. B, 2018, 27(6): 067301.
[8] Graphene-enhanced thermoelectric properties of p-type skutterudites
Dandan Qin(秦丹丹), Yuan Liu(刘嫄), Xianfu Meng(孟宪福), Bo Cui(崔博), Yaya Qi(祁亚亚), Wei Cai(蔡伟), Jiehe Sui(隋解和). Chin. Phys. B, 2018, 27(4): 048402.
[9] Nanocrystalline and nanocomposite permanent magnets by melt spinning technique
Chuanbing Rong(荣传兵), Baogen Shen(沈保根). Chin. Phys. B, 2018, 27(11): 117502.
[10] Rare earth permanent magnets prepared by hot deformation process
Ren-Jie Chen(陈仁杰), Ze-Xuan Wang(王泽轩), Xu Tang(唐旭), Wen-Zong Yin(尹文宗), Chao-Xiang Jin(靳朝相), Jin-Yun Ju(剧锦云), Don Lee(李东), A-Ru Yan(闫阿儒). Chin. Phys. B, 2018, 27(11): 117504.
[11] Design and optimization of carbon nanotube/polymer actuator by using finite element analysis
Wei Zhang(张薇), Luzhuo Chen(陈鲁倬), Jianmin Zhang(张健敏), Zhigao Huang(黄志高). Chin. Phys. B, 2017, 26(4): 048801.
[12] Modified Maxwell model for predicting thermal conductivity of nanocomposites considering aggregation
Wen-Kai Zhen(甄文开), Zi-Zhen Lin(蔺子甄), Cong-Liang Huang(黄丛亮). Chin. Phys. B, 2017, 26(11): 114401.
[13] Novel Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites: High-efficiency and magnetic recyclable catalysts for organic dye degradation
Chao Li(李超), Jun-Jie Sun(孙俊杰), Duo Chen(陈铎), Guang-Bing Han(韩广兵), Shu-Yun Yu(于淑云), Shi-Shou Kang(康仕寿), Liang-Mo Mei(梅良模). Chin. Phys. B, 2016, 25(8): 088201.
[14] Van der Waals heterostructure of phosphorene and hexagonal boron nitride: First-principles modeling
Peng Zhang(张鹏), Jing Wang(王静), Xiang-Mei Duan(段香梅). Chin. Phys. B, 2016, 25(3): 037302.
[15] Effect of amorphous lamella on the crack propagation behavior of crystalline Mg/amorphous Mg-Al nanocomposites
Hai-Yang Song(宋海洋) and Yu-Long Li(李玉龙). Chin. Phys. B, 2016, 25(2): 026802.
No Suggested Reading articles found!