Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 017202    DOI: 10.1088/1674-1056/28/1/017202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Semi-analytic study on the conductance of a lengthy armchair honeycomb nanoribbon including vacancies, defects, or impurities

Fateme Nadri1, Mohammad Mardaani1,2, Hassan Rabani1,2
1 Department of Physics, Faculty of Science, Shahrekord University, P. O. Box 115 Shahrekord, Iran;
2 Nanotechnology Research Center, Shahrekord University, 8818634141 Shahrekord, Iran
Abstract  

We present a semi-analytic method to study the electronic conductance of a lengthy armchair honeycomb nanoribbon in the presence of vacancies, defects, or impurities located at a small part of it. For this purpose, we employ the Green's function technique within the nearest neighbor tight-binding approach. We first convert the Hamiltonian of an ideal semi-infinite nanoribbon to the Hamiltonian of some independent polyacetylene-like chains. Then, we derive an exact formula for the self-energy of the perturbed part due to the existence of ideal parts. The method gives a fully analytical formalism for some cases such as an infinite ideal nanoribbon and the one including linear symmetric defects. We calculate the transmission coefficient for some different configurations of a nanoribbon with special width including a vacancy, edge geometrical defects, and two electrical impurities.

Keywords:  nanoribbon      conductance      vacancy      impurity      Green's function  
Received:  09 September 2018      Revised:  06 November 2018      Accepted manuscript online: 
PACS:  72.80.Vp (Electronic transport in graphene)  
  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  78.67.Uh (Nanowires)  
Corresponding Authors:  Mohammad Mardaani     E-mail:  mohammad-m@sci.sku.ac.ir

Cite this article: 

Fateme Nadri, Mohammad Mardaani, Hassan Rabani Semi-analytic study on the conductance of a lengthy armchair honeycomb nanoribbon including vacancies, defects, or impurities 2019 Chin. Phys. B 28 017202

[1] Torres L E F F, Roche S and Charlier J C 2014 Introduction to Graphene-Based Nanomaterials (Cambridge: Cambridge University Press)
[2] Katsnelson M I 2012 Graphene: Carbon in Two Dimensions (Cambridge: Cambridge University Press)
[3] Novoselov K, Geim A and Morozov S 2004 Science 306 666
[4] Li X, Wang X, Zhang L, Lee S and Dai H 2008 Science 319 1229
[5] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Müllen K and Fasel R 2010 Nature 466 470
[6] Blankenburg S, Cai J, Ruffieux P, Jaafar R, Passerone D, Feng X, Müllen K, Fasel R and Pignedoli C A 2012 ACS Nano 6 2020
[7] Djavid N, Khaliji K, Tabatabaei S M and Pourfath M 2014 IEEE T. Electron Dev. 61 23
[8] Chauhan S S, Srivastava P and Shrivastava A K 2014 Appl. Nanosci. 4 461
[9] Guerra T, Azevedo S and Machado M 2016 Eur. Phys. J. B 89 58
[10] Thrower P A and Mayer R M 1987 Phys. Status. Solidi. (a) 47 11
[11] Thrower P A 1964 Brit. J. Appl. Phys. 15 1153
[12] Koch M, Li Z, Nacci C, Kumagai T, Franco I and Grill L 2018 Phys. Rev. Lett. 121 047701
[13] Gorjizadeh N, Farajian A A and Kawazoe Y 2008 Nanotech. Let. 20 015201
[14] Biel B, Blase X, Triozon F and Roche S 2009 Phys. Rev. Lett. 102 096803
[15] Zheng X H, Rungger I, Zeng Z and Sanvito S 2009 Phys. Rev. B 80 235426
[16] Smith C W, Katoch J and Ishigami M 2013 Appl. Phys. Lett. 102 133502
[17] Rabani H, Mardaani M and Mazloom Shahraki A 2013 Superlattice. Microst. 59 106
[18] Sharmaa B L 2018 Eur. Phys. J. B 91 84
[19] Stegmann T, Franco-Villafañe J A, Kuhl U, Mortessagne F and Seligman T H 2017 Phys. Rev. B 95 035413
[20] Mardaani M and Rabani H 2013 J. Magn. Magn. Mater. 331 28
[21] Mardaani M, Rabani H and Esmaeili A 2011 Solid State Commun. 151 928
[22] Xiong Y J and Kong X L 2010 Physica B 405 1690
[23] Lehmann T, Ryndyk D A and Cuniberti G 2013 Phys. Rev. B 88 125420
[24] Ihnatsenka S and Kirczenow G 2009 Phys. Rev. B 80 201407R
[25] Haskins J, Kýnacý A, Sevik C, Sevinc-li H, Cuniberti G and Çağin T 2011 ACS Nano 5 3779
[26] Simchi H, Esmaeilzadeh M and Saani M H 2012 Phys. Status Solidi B 249 1735
[1] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[2] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[3] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[4] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[5] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[6] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[7] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[8] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[9] Intrinsic V vacancy and large magnetoresistance in V1-δSb2 single crystal
Yong Zhang(张勇), Xinliang Huang(黄新亮), Jinglei Zhang(张警蕾), Wenshuai Gao(高文帅), Xiangde Zhu(朱相德), and Li Pi(皮雳). Chin. Phys. B, 2022, 31(3): 037102.
[10] Solid-gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect
Xue Zhao(赵雪) and Jin-Wu Jiang(江进武). Chin. Phys. B, 2022, 31(12): 126802.
[11] Origin of the low formation energy of oxygen vacancies in CeO2
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林). Chin. Phys. B, 2022, 31(10): 107102.
[12] Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations
Jing-Fen Zhao(赵敬芬), Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟). Chin. Phys. B, 2022, 31(1): 017302.
[13] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[14] Single-channel vector magnetic information detection method based on diamond NV color center
Qin-Qin Wang(王琴琴), Rui-Rong Wang(王瑞荣), Jin-Ping Liu(刘金萍), Shao-Zhuo Lin(林绍卓), Liang-Wei Wu(武亮伟), Hao Guo(郭浩), Zhong-Hao Li(李中豪), Huan-Fei Wen(温焕飞), Jun Tang(唐军), Zong-Min Ma(马宗敏), and Jun Liu (刘俊). Chin. Phys. B, 2021, 30(8): 080701.
[15] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
No Suggested Reading articles found!