Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 013301    DOI: 10.1088/1674-1056/28/1/013301
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Novel infrared differential optical absorption spectroscopy remote sensing system to measure carbon dioxide emission

Ru-Wen Wang(王汝雯)1,2, Pin-Hua Xie(谢品华)1,2,3, Jin Xu(徐晋)1, Ang Li(李昂)1
1 Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China;
2 University of Science and Technology of China, Hefei 230026, China;
3 CAS Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Abstract  

A CO2 infrared remote sensing system based on the algorithm of weighting function modified differential optical absorption spectroscopy (WFM-DOAS) is developed for measuring CO2 emissions from pollution sources. The system is composed of a spectrometer with band from 900 nm to 1700 nm, a telescope with a field of view of 1.12°, a silica optical fiber, an automatic position adjuster, and the data acquisition and processing module. The performance is discussed, including the electronic noise of the charge-coupled device (CCD), the spectral shift, and detection limits. The resolution of the spectrometer is 0.4 nm, the detection limit is 8.5×1020 molecules·cm-2, and the relative retrieval error is < 1.5%. On May 26, 2018, a field experiment was performed to measure CO2 emissions from the Feng-tai power plant, and a two-dimensional distribution of CO2 from the plume was obtained. The retrieved differential slant column densities (dSCDs) of CO2 are around 2×1021 molecules·cm-2 in the unpolluted areas, 5.5×1021 molecules·cm-2 in the plume locations most strongly affected by local CO2 emissions, and the fitting error is less than 2×1020 molecules·cm-2, which proves that the infrared remote sensing system has the characteristics of fast response and high precision, suitable for measuring CO2 emission from the sources.

Keywords:  weighting function modified differential optical absorption spectroscopy (WFM-DOAS)      infrared      instrument      CO2 emission sources  
Received:  18 September 2018      Revised:  18 October 2018      Accepted manuscript online: 
PACS:  33.20.Ea (Infrared spectra)  
  07.88.+y (Instruments for environmental pollution measurements)  
  42.87.-d (Optical testing techniques)  
  42.72.Ai (Infrared sources)  
Fund: 

Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 41530644).

Corresponding Authors:  Pin-Hua Xie, Jin Xu     E-mail:  phxie@aiofm.ac.cn;jxu@aiofm.ac.cn

Cite this article: 

Ru-Wen Wang(王汝雯), Pin-Hua Xie(谢品华), Jin Xu(徐晋), Ang Li(李昂) Novel infrared differential optical absorption spectroscopy remote sensing system to measure carbon dioxide emission 2019 Chin. Phys. B 28 013301

[1] Houghton J T, Ding Y, Griggs D J, Noguer M, van der Linden P J, Dai X, Maskell K and Johnson C A 2001 IPCC: Climate Change 2001: The Scientific Basis (Cambridge: Cambridge University Press) p. 881
[2] Sabine C L, Freely R A, Gruber N, Key R M, Lee K, Bullister J L, Wanninkhof R, Wong C S, Wallace D W R, Tilbrook B, Millero F J, Peng T H, Kozyr A, Ono T and Roso A F 2004 Science 305 367
[3] Saunois M, Jackson, R B Bousquet P, Poulter B and Canadell J G 2016 Environ. Res. Lett. 11 120207
[4] Krings T, Gerilowski K, Buchwitz M, Reuter M, Tretner A, Erzinger J, Heinze D, Pfluger U, Burrows J P and Bovensmann H 2011 Atmos. Meas. Tech. 4 1735
[5] Zhang F, Zhou L X and Xu L 2013 Sci. Chin. Earth Sci. 56 727
[6] García M Á, Sánchez M L, Pérez I A, Ozores M I and Pardo N 2016 Sci. Total Environ. 550 157
[7] Gottwald M and Bovensmann H 2011 SCIAMACHY - Exploring the Changing Earth's Atmosphere (Netherlands: Springer) pp. 176-216
[8] Frankenberg C, Pollock R, Lee R A M, Rosenberg R, Blavier J F, Crisp D, O'Dell C W, Osterman G B, Roehl C, Wennberg P O and Wunch D 2015 Atmos. Meas. Tech. 8 301
[9] Houweling S, Hartmann W, Aben I, Schrijver H, Skidmore J, Roelofs G J and Breon F M 2005 Atmos. Chem. Phys. 5 3003
[10] Frankenberg C, Pollock R, Lee R A M, Rosenberg R, Blavier J F, Crisp D, O'Dell C W, Osterman G B, Roehl C, Wennberg P O and Wunch D 2015 Atmos. Meas. Tech. 8 301
[11] Machida T 2008 J. Atmos. Oceanic Technol. 25 1744
[12] Du J, Sun Y G, Chen D J, Mu Y J, Huang M J, Yang Z G, Liu J Q, Bi D C, Hou X and Chen W B 2017 Chin. Opt. Lett. 15 031401
[13] Wang Z, Chen S, Yang C and Wang M 2011 Chin. Opt. Lett. 9 020101
[14] Buchwitz M, de Beek R, Bramstedt K, Noël S, Bovensmann H and Burrows J P 2004 Atmos. Chem. Phys. 4 1945
[15] Buchwitz M, de Beek R, Burrows J P, Bovensmann H, Warneke T, Notholt J, Meirink J F, Goede A P H, Bergamaschi P, Körner S, Heimann M and Schulz A 2005 Atmos. Chem. Phys. 5 941
[16] Buchwitz M, de Beek R, Noël S, Burrows J P, Bovensmann H, Bremer H, Bergamaschi P, Körner S and Heimann M 2005 Atmos. Chem. Phys. 5 3313
[17] Gong W, Liang A L, Han G, Ma X and Xiang C Z 2015 Photon. Res. 3 146
[18] Gong W, Xiang C Z, Mao F Y, Ma X and Liang A L 2016 Photon. Res. 4 74
[19] Chédin A, Saunders R, Hollingsworth A, Scott N A, Matricardi M, Etcheto J, Clerbaux C, Armante R and Crevoisier C 2003 J. Geophys. Res. 108 4064
[20] Barkley M P, Frieß U and Monks P S 2006 Atmos. Chem. Phys. 6 3517
[21] Coldewey-Egbers M, Weber M, Buchwitz M and Burrows 2004 Adv. Space Res. 34 749
[22] Noël S, Buchwitz M and Burrows J P 2004 Atmos. Chem. Phys. 4 111
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation
Yuan-Hao Zhao(赵元昊), Meng-Yu Zong(宗梦雨), Jia-Hao Dong(董佳昊), Zhen Zhang(张振), Jing-Jing Liu(刘晶晶), Jie Liu(刘杰), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2023, 32(3): 034203.
[3] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[4] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[5] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[6] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[7] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[8] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[9] Facile sensitizing of PbSe film for near-infrared photodetector by microwave plasma processing
Kangyi Zhao(赵康伊), Shuanglong Feng(冯双龙), Chan Yang(杨婵),Jun Shen(申钧), and Yongqi Fu(付永启). Chin. Phys. B, 2022, 31(3): 038504.
[10] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[11] Optical study on topological superconductor candidate Sr-doped Bi2Se3
Jialun Liu(刘佳伦), Chennan Wang(王晨南), Tong Lin(林桐), Liye Cao(曹立叶), Lei Wang(王蕾), Jiaji Li(李佳吉), Zhen Tao(陶镇), Nan Shen(申娜), Rina Wu(乌日娜), Aifang Fang(房爱芳), Nanlin Wang(王楠林), and Rongyan Chen(陈荣艳). Chin. Phys. B, 2022, 31(11): 117402.
[12] Tuning infrared absorption in hyperbolic polaritons coated silk fibril composite
Lihong Shi(史丽弘) and Jiebin Peng(彭洁彬). Chin. Phys. B, 2022, 31(11): 114401.
[13] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[14] Near-infrared photocatalysis based on upconversion nanomaterials
Xingyuan Guo(郭星原), Zhe Wang(王哲), Shengyan Yin(尹升燕), and Weiping Qin(秦伟平). Chin. Phys. B, 2022, 31(10): 108201.
[15] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
No Suggested Reading articles found!