Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 010505    DOI: 10.1088/1674-1056/28/1/010505
GENERAL Prev   Next  

Effect of exit location on flow of mice under emergency condition

Teng Zhang(张腾)1, Shen-Shi Huang(黄申石)1, Xue-Lin Zhang(张学林)1,2, Shou-Xiang Lu(陆守香)1, Chang-Hai Li(黎昌海)1
1 State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027, China;
2 School of Civil Engineering, Chongqing Three Gorges University, Chongqing 404000, China
Abstract  

The evacuation of crowds in a building has always emerged as a vital issue in many accidents. The geometrical structure of a room, especially the exit design has a great influence on crowd evacuation under emergency conditions. In this paper, the effect of exit location of a room on crowd evacuation in an emergency is investigated with mice. Two different exits are set in a rectangular chamber. One is located in the middle of a wall (middle-exit) and the other is at the corner of the chamber (corner-exit). Arching and clogging are observed in the flow of mice. The result based on the escape trajectories of mice shows a dynamic balance in the arch near the exit wherever the exit is located. We demonstrate that the occupant position in the arch has an effect on the escape sequence of mice. At a low stimulation level, the narrow middle-exit is more effective in increasing the flow rate of mice than the narrow corner-exit. However, the opposite result appears when the exit becomes wider. At a high stimulation level, the effect of exit location on flow of mice tends to be weakened. The results suggest that the specific level of stimulation needs to be taken into account when optimizing the evacuation efficiency of a crowd through the geometrical structure of a room.

Keywords:  exit location      evacuation      mice      stimulation level  
Received:  07 July 2018      Revised:  07 November 2018      Accepted manuscript online: 
PACS:  05.65.+b (Self-organized systems)  
  45.70.Mg (Granular flow: mixing, segregation and stratification)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB1200404).

Corresponding Authors:  Shou-Xiang Lu     E-mail:  sxlu@ustc.edu.cn

Cite this article: 

Teng Zhang(张腾), Shen-Shi Huang(黄申石), Xue-Lin Zhang(张学林), Shou-Xiang Lu(陆守香), Chang-Hai Li(黎昌海) Effect of exit location on flow of mice under emergency condition 2019 Chin. Phys. B 28 010505

[1] Shiwakoti N and Sarvi M 2013 J. Transp. Geogr. 26 12
[2] Gwynne S, Galea E R, Owen M, Lawrence P J and Filippidis L 1999 Build. Environ. 34 741
[3] Helbing D, Farkas I and Vicsek T 2000 Nature 407 487
[4] Still G K 2000 Crowd Dynamics (Ph.D. dissertation) (Aberdeen: University of Warwick)
[5] Hoogendoorn S P and Bovy P H L 2002 15th Int. Symp. Transportation Traffic Theory July 16-18 2002 Adelaide, Australia, p. 219
[6] Helbing D and Molnar P 1995 Phys. Rev. E 51 4282
[7] Tavares R M and Galea E R 2009 Build. Environ. 44 1005
[8] Shiwakoti N, Sarvi M, Rose G and Burd M 2011 Trans. Res. Part. B 45 1433
[9] Dong L Y, Lan D K, Li X 2016 Chin. Phys. B 25 98901
[10] Lin P, Ma J, Si Y L, Wu F Y, Wang G Y and Wang J Y 2017 Chin. Phys. B 26 104501
[11] Zheng X, Zhong T and Liu M 2009 Build. Environ. 44 437
[12] Shiwakoti N, Sarvi M, Rose G and Burd M 2010 Transp. Res. Rec 2196 176
[13] Shiwakoti N, Sarvi M and Burd M 2014 Saf. Sci. 66 1
[14] Altshuler E, Ramos O, Núñez Y, Fernández J, Batista-Leyva A and Noda C 2005 Am. Nature 166 643
[15] Nishinari K, Sugawara K, Kazama T, Schadschneider A and Chowdhury D 2006 Phys. A 372 132
[16] Soria S A, Josens R and Parisi D R 2012 Saf. Sci. 50 1584
[17] Boari S, Josens R and Parisi D R 2013 PLoS One 8 e81082
[18] Li G, Huan D, Roehner B, Xu Y, Zeng L, Di Z and Han Z 2014 PLoS One 9 e114517
[19] Parisi D R, Soria S A and Josens R 2015 Saf. Sci. 72 274
[20] Wang S, Lv W and Song W 2015 PLoS One 10 e0131784
[21] Wang S, Cao S, Wang Q, Lian L and Song W 2016 Phys. A 457 239
[22] Chung Y K and Lin C C 2017 PLoS One 12 e0173642
[23] Garcimartin A, Pastor J M, Ferrer L M, Ramos J J, Martin Gomez C and Zuriguel I 2015 Phys. Rev. E 91 022808
[24] Zuriguel I, Olivares J, Pastor J M, Martin Gomez C, Ferrer L M, Ramos J J and Garcimartin A 2016 Phys. Rev. E 94 032302
[25] Saloma C, Perez G J, Tapang G, Lim M and Palmes Saloma C 2003 Proc. Natl. Acad. Sci. U. S. A. 100 11947
[26] Saloma C, Perez G J, Gavile C A, Ick Joson J J and Palmes Saloma C 2015 PLoS One 10 e0118508
[27] Chen J M, Zeng Q, Zhang W B, Wu Y H, Liu Q L, Lin P 2016 Proc. Pedestrian Evacuation Dyn. 2016 October 17-21 Hefei, China, p. 159
[28] Lin P, Ma J, Liu T, Ran T, Si Y and Li T 2016 Phys. A 452 157
[29] Lin P, Ma J, Liu T Y, Ran T, Si Y L, Wu F Y and Wang G Y 2017 Phys. A 482 228
[30] Zhang Y C, Ma J, Si Y L, Ran T, Wu F Y, Wang G Y and Lin P 2017 Chin. Phys. B 26 084504
[31] Chen J M, Lin P, Wu F Y, Gao D L, Wang G Y 2018 J. Stat. Mech.-Theory Exp. 2018 023404
[32] Wu F Y, Wang G Y, Si Y L and Lin P 2018 Procedia Eng. 211 801
[33] Zhang T, Zhang X L, Huang S S, Li C H, Lu S X 2018 Phys. A 496 233
[34] Sobhani A, Sarvi M, Duives D, Ejtemai O, Aghabayk K and Hoogendoorn S 2014 Transportation Res. Procedia 2 745
[35] Broly P and Deneubourg J L 2015 PLoS Comput. Biol. 11 e1004290
[36] Lang P J, Davis M and Öhman A 2000 J. Affect. Disord. 61 137
[37] Davis M and Whalen P J 2001 Mol. Psychiatr. 6 13
[38] Shiwakoti N and Sarvi M 2013 Trans. Res. Part. C 37 260
[39] Baitharu I, Jain V, Deep S N, Kumar G and Ilavazhagan G 2013 J. Behavioral Brain Sci. 3 591
[40] Smutek M, Turbasa M, Sikora M, Piechota M, Zajdel J, Przewlocki R and Parkitna J R 2014 PLoS One 9 e96787
[41] Van Dam D, Lenders G and De Deyn P P 2006 Neurobiol. Learn. Mem. 85 164
[42] Vorhees C V and Williams M T 2014 ILAR J. 55 310
[43] Heliovaara S, Ehtamo H, Helbing D and Korhonen T 2013 Phys. Rev. E 87 012802
[44] Dussutour A, Deneubourg J L and Fourcassié V 2005 Proc. R. Soc. B-Biol. Sci. 272 705
[45] Bode N W F and Seitz M J 2017 Sci. Nature 105 7
[46] Daamen W and Hoogendoorn S 2010 Procedia Eng. 3 53
[47] Daamen W and Hoogendoorn S P 2012 Fire Technol. 48 55
[48] Wang J Y, Ma J and Lin P 2018 9th Pedestrian Evacuation Dyn. August 21-24, Lund, Sweden (Unpublished)
[1] Pedestrian evacuation simulation in multi-exit case:An emotion and group dual-driven method
Yong-Xing Li(李永行), Xiao-Xia Yang(杨晓霞), Meng Meng(孟梦), Xin Gu(顾欣), Ling-Peng Kong(孔令鹏). Chin. Phys. B, 2023, 32(4): 048901.
[2] Simulation based on a modified social force model for sensitivity to emergency signs in subway station
Zheng-Yu Cai(蔡征宇), Ru Zhou(周汝), Yin-Kai Cui(崔银锴), Yan Wang(王妍), and Jun-Cheng Jiang(蒋军成). Chin. Phys. B, 2023, 32(2): 020507.
[3] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[4] Passenger management strategy and evacuation in subway station under Covid-19
Xiao-Xia Yang(杨晓霞), Hai-Long Jiang(蒋海龙), Yuan-Lei Kang(康元磊), Yi Yang(杨毅), Yong-Xing Li(李永行), and Chang Yu(蔚畅). Chin. Phys. B, 2022, 31(7): 078901.
[5] Simulation of crowd dynamics in pedestrian evacuation concerning panic contagion: A cellular automaton approach
Guan-Ning Wang(王冠宁), Tao Chen(陈涛), Jin-Wei Chen(陈锦炜), Kaifeng Deng(邓凯丰), and Ru-Dong Wang(王汝栋). Chin. Phys. B, 2022, 31(6): 060402.
[6] An extended cellular automata model with modified floor field for evacuation
Da-Hui Qin(秦大辉), Yun-Fei Duan(段云飞), Dong Cheng(程栋), Ming-Zhu Su(苏铭著), Yong-Bo Shao(邵永波). Chin. Phys. B, 2020, 29(9): 098901.
[7] Simulation study on cooperation behaviors and crowd dynamics in pedestrian evacuation
Ya-Ping Ma(马亚萍), Hui Zhang(张辉). Chin. Phys. B, 2020, 29(3): 038901.
[8] Simulation-based optimization of inner layout of a theater considering the effect of pedestrians
Qing-Fei Gao(高庆飞), Yi-Zhou Tao(陶亦舟), Yan-Fang Wei(韦艳芳), Cheng Wu(吴成), Li-Yun Dong(董力耘). Chin. Phys. B, 2020, 29(3): 034501.
[9] Analyzing floor-stair merging flow based on experiments and simulation
Yu Zhu(朱萸), Tao Chen(陈涛), Ning Ding(丁宁), Wei-Cheng Fan(范维澄). Chin. Phys. B, 2020, 29(1): 010401.
[10] Evacuation simulation considering action of guard in artificial attack
Chang-Kun Chen(陈长坤), Yun-He Tong(童蕴贺). Chin. Phys. B, 2019, 28(1): 010503.
[11] Evacuation flow of pedestrians considering compassion effect
Yu-Zhang Chen(陈煜章), Ming Li(李明), Rui Jiang(姜锐), Mao-Bin Hu(胡茂彬). Chin. Phys. B, 2018, 27(8): 088901.
[12] Spatial memory enhances the evacuation efficiency of virtual pedestrians under poor visibility condition
Yi Ma(马毅), Eric Wai Ming Lee(李伟民), Meng Shi(施朦), Richard Kwok Kit Yuen(袁国杰). Chin. Phys. B, 2018, 27(3): 038901.
[13] Required width of exit to avoid the faster-is-slower effect in highly competitive evacuation
Yu-Chun Zhang(张玉春), Jian Ma(马剑), You-Liang Si(司有亮), Tong Ran(冉桐), Fan-Yu Wu(吴凡雨), Guo-Yuan Wang(王国元), Peng Lin(林鹏). Chin. Phys. B, 2017, 26(8): 084504.
[14] Constant evacuation time gap:Experimental study and modeling
Ning Guo(郭宁), Rui Jiang(姜锐), Mao-Bin Hu(胡茂彬), Jian-Xun Ding(丁建勋). Chin. Phys. B, 2017, 26(12): 120506.
[15] Pedestrian evacuation at the subway station under fire
Xiao-Xia Yang(杨晓霞), Hai-Rong Dong(董海荣), Xiu-Ming Yao(姚秀明), Xu-Bin Sun(孙绪彬). Chin. Phys. B, 2016, 25(4): 048902.
No Suggested Reading articles found!