Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 124207    DOI: 10.1088/1674-1056/27/12/124207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Room-temperature continuous-wave interband cascade laser emitting at 3.45 μm

Yi Zhang(张一)1,2,3, Fu-Hui Shao(邵福会)1,2,3, Cheng-Ao Yang(杨成奥)1,2,3, Sheng-Wen Xie(谢圣文)1,2,3, Shu-Shan Huang(黄书山)1,2,3, Ye Yuan(袁野)1,2,3, Jin-Ming Shang(尚金铭)1,2,3, Yu Zhang(张宇)1,2,3, Ying-Qiang Xu(徐应强)1,2,3, Hai-Qiao Ni(倪海桥)1,2,3, Zhi-Chuan Niu(牛智川)1,2,3
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083 China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China;
3 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  

We report a type-Ⅱ GaSb-based interband cascade laser operating a continuous wave at room temperature. The cascade region of interband cascade laser was designed using the ‘W’ configuration of the active quantum wells and the ‘Carrier Rebalancing’ method in the electron injector. The devices were processed into narrow ridges and mounted epitaxial side down on a copper heat sink. The 25-μm-wide, 3-mm-long ridge without coated facets generated 41.4 mW of continuous wave output power at T=15℃. And a low threshold current density of 267 A/cm2 is achieved. The emission wavelength of the ICL is 3452.3 nm at 0.5 A.

Keywords:  interband cascade laser      mid-infrared      GaSb-based      type-Ⅱ W quantum well  
Received:  14 August 2018      Revised:  01 September 2018      Accepted manuscript online: 
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  78.55.Cr (III-V semiconductors)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  42.60.Pk (Continuous operation)  
Fund: 

Project supported by the Major Program of the National Natural Science Foundation of China (Grant No. 61790580), the National Natural Science Foundation of China (Grant No. 61435012), and the National Basic Research Program of China (Grant No. 2014CB643903).

Corresponding Authors:  Yu Zhang, Zhi-Chuan Niu     E-mail:  zhangyu@semi.ac.cn;zcniu@semi.ac.cn

Cite this article: 

Yi Zhang(张一), Fu-Hui Shao(邵福会), Cheng-Ao Yang(杨成奥), Sheng-Wen Xie(谢圣文), Shu-Shan Huang(黄书山), Ye Yuan(袁野), Jin-Ming Shang(尚金铭), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川) Room-temperature continuous-wave interband cascade laser emitting at 3.45 μm 2018 Chin. Phys. B 27 124207

[1] Grau M, Lin C, Dier O, Lauer C and Amann M C 2005 Appl. Phys. Lett. 87 241104
[2] Shterengas L, Belenky G, Kipshidze G and Hosoda T 2008 Appl. Phys. Lett. 92 171111
[3] Shterengas L, Liang R, Kipshidze G, Hosoda T, Suchalkin S and Belenky G 2013 Appl. Phys. Lett. 103 121108
[4] Shterengas L, Liang R, Kipshidze G and Hosoda T 2014 Appl. Phys. Lett. 105 161112
[5] Hosoda T, Wang M, Shterengas L, Kipshidze G and Belenky G 2015 Appl. Phys. Lett. 107 111106
[6] Bandyopadhyay N, Bai Y, Tsao S, Nida S, Slivken S and Razeghi M 2012 Appl. Phys. Lett. 101 241110
[7] Bandyopadhyay N, Slivken S, Bai Y and Razeghi M 2012 Appl. Phys. Lett. 100 212104
[8] Canedy C L, Bewley W W, Lindle J R, Kim C S, Kim M, Vurgaftman I and Meyer J R 2006 Appl. Phys. Lett. 88 161103
[9] Kim M, Canedy C L, Bewley W W, Kim C S, Lindle J R, Abell J, Vurgaftman I and Meyer J R 2008 Appl. Phys. Lett. 92 191110
[10] Garimard Q, Nguyenba T, Larrue A, Cerutti L, Rouillard Y, Gauthier O, Teissier R and Vicet A 2014 Proc. SPIE 9134 91341J
[11] Vurgaftman I, Bewley W W, Merritt C D, Canedy C L, Kim C S, Abell J, Meyer J R and Kim M 2012 Proc. SPIE 8268 82681F
[12] Bewley W W, Merritt C D, Kim C S, Kim M, Canedy C L, Vurgaftman I, Abell J and Meyer J R 2012 Proc. SPIE 8374 83740H
[13] Weih R, Kamp M and Hofling S 2013 Appl. Phys. Lett. 102 231123
[14] Yang R Q and Pei S S 1996 J. Appl. Phys. 79 8197
[15] Canedy C L, Abell J, Merritt C D, Bewley W W, Kim C S, Kim M, Vurgaftman I and Meyer J R 2014 Proc. SPIE 9002 90021C
[16] Xing J L, Zhang Y, Liao Y P, Wang J, Xiang W, Xu Y Q, Wang G W, Ren Z W and Niu Z C 2014 Proc. SPIE 9002 90021C
[17] Bewley W W, Canedy C L, Kim C S, Kim M, Merritt C D, Abell J, Vurgaftman I and Meyer J R 2012 Opt. Express 20 20894
[18] Bauer A, Dallner M, Kamp M, Hofling S, Worschech L and Forchel 2010 Opt. Eng. 49 111117
[19] Vurgaftman I, Bewley W W, Merritt C D, Canedy C L, Kim C S, Abell J, Meyer J R and Kim M 2012 Proc. SPIE 8268 82681F
[20] Meyer J R, Hoffman C A, Bartoli F J and Ram-Mohan L R 1995 Appl. Phys. Lett. 67 757
[21] Vurgaftman I, Bewley W W, Canedy C L, Kim C S, Kim M, Merritt C D, Abell J, Lindle J R and Meyer J R 2011 Nat. Commun. 2 585
[1] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[2] Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation
Yuan-Hao Zhao(赵元昊), Meng-Yu Zong(宗梦雨), Jia-Hao Dong(董佳昊), Zhen Zhang(张振), Jing-Jing Liu(刘晶晶), Jie Liu(刘杰), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2023, 32(3): 034203.
[3] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[4] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[5] Ultrabroadband mid-infrared emission from Cr2+:ZnSe-doped chalcogenide glasses prepared via hot uniaxial pressing and melt-quenching
Ke-Lun Xia(夏克伦), Guang Jia(贾光), Hao-Tian Gan(甘浩天), Yi-Ming Gui(桂一鸣), Xu-Sheng Zhang(张徐生), Zi-Jun Liu(刘自军), and Xiang Shen(沈祥). Chin. Phys. B, 2021, 30(9): 094208.
[6] Omnidirectional and compact Tamm phonon-polaritons enhanced mid-infrared absorber
Xiaomin Hua(花小敏), Gaige Zheng(郑改革), Fenglin Xian(咸冯林), Dongdong Xu(徐董董), and Shengyao Wang(王升耀). Chin. Phys. B, 2021, 30(8): 084202.
[7] Mid-infrared supercontinuum generation and its application on all-optical quantization with different input pulses
Yan Li(李妍), Xinzhu Sang(桑新柱). Chin. Phys. B, 2019, 28(5): 054206.
[8] Experimental and numerical investigation of mid-infrared laser in Pr3+-doped chalcogenide fiber
Hua Chen(陈华), Ke-Lun Xia(夏克伦), Zi-Jun Liu(刘自军), Xun-Si Wang(王训四), Xiang-Hua Zhang(章向华), Yin-Sheng Xu(许银生), Shi-Xun Dai(戴世勋). Chin. Phys. B, 2019, 28(2): 024209.
[9] High performance GaSb based digital-grown InGaSb/AlGaAsSb mid-infrared lasers and bars
Sheng-Wen Xie(谢圣文), Yu Zhang(张宇), Cheng-Ao Yang(杨成奥), Shu-Shan Huang(黄书山), Ye Yuan(袁野), Yi Zhang(张一), Jin-Ming Shang(尚金铭), Fu-Hui Shao(邵福会), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(1): 014208.
[10] Mid-infrared luminescence of Dy3+-doped Ga2S3-Sb2S3-CsI chalcohalide glasses
Anping Yang(杨安平), Jiahua Qiu(邱嘉桦), Mingjie Zhang(张鸣杰), Mingyang Sun(孙明阳), Zhiyong Yang(杨志勇). Chin. Phys. B, 2018, 27(7): 077105.
[11] Magneto optics and time resolved terahertz spectrocopy
T Dong(董涛), Z G Chen(谌志国), N L Wang(王楠林). Chin. Phys. B, 2018, 27(7): 077501.
[12] Highly-sensitive NO, NO2, and NH3 measurements with an open-multipass cell based on mid-infrared wavelength modulation spectroscopy
Xiang Chen(陈祥), Chen-Guang Yang(杨晨光), Mai Hu(胡迈), Jian-Kang Shen(沈建康), Er-Chao Niu(牛二超), Zhen-Yu Xu(许振宇), Xue-Li Fan(范雪丽), Min Wei(魏敏), Lu Yao(姚路), Ya-Bai He(何亚柏), Jian-Guo Liu(刘建国), Rui-Feng Kan(阚瑞峰). Chin. Phys. B, 2018, 27(4): 040701.
[13] Double-rod metasurface for mid-infrared polarization conversion
Yang Pu(蒲洋), Yi Luo(罗意), Lu Liu(刘路), De He(何德), Hongyan Xu(徐洪艳), Hongwei Jing(景洪伟), Yadong Jiang(蒋亚东), Zhijun Liu(刘志军). Chin. Phys. B, 2018, 27(2): 024202.
[14] Self-compression of 1.8-μm pulses in gas-filled hollow-core fibers
Rui-Rui Zhao(赵睿睿), Ding Wang(王丁), Yu Zhao(赵钰), Yu-Xin Leng(冷雨欣), Ru-Xin Li(李儒新). Chin. Phys. B, 2017, 26(10): 104206.
[15] Broadband tunable Raman soliton self-frequency shift to mid-infrared band in a highly birefringent microstructure fiber
Wei Wang(王伟), Xin-Ying Bi(毕新英), Jun-Qi Wang(王珺琪), Yu-Wei Qu(屈玉玮), Ying Han(韩颖), Gui-Yao Zhou(周桂耀), Yue-Feng Qi(齐跃峰). Chin. Phys. B, 2016, 25(7): 074206.
No Suggested Reading articles found!