Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 126801    DOI: 10.1088/1674-1056/27/12/126801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effects of dielectric decrement on surface potential in a mixed electrolyte solution

Jing Peng(彭景), Wen-Xin Zou(邹温馨), Rui Tian(田锐), Hang Li(李航), Xin-Min Liu(刘新敏)
Chongqing Key Laboratory of Soil Multiscale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400715, China
Abstract  

Surface potential is an important parameter related to the physical and chemical properties of charged particles. A simple analytical model for the estimation of surface potential is established based on the Poisson-Boltzmann theory with the consideration of the dielectric decrement in mixed electrolyte. The analytical relationships between surface potential and charge density are derived in different mixed electrolytes with monovalent and bivalent ions. The dielectric decrease on the charged surface strongly affects the surface potential at a high charge density with different ion strengths and concentration ratios of counter-ions. The surface potential based on the Gouy-Chapman model is underestimated because of the dielectric decrement on the surface. The diffuse layer can be regarded as a continuous uniform medium only when the surface charge density is lower than 0.3 C·m-2. However, the surface charge densities of many materials in practical applications are higher than 0.3 C·m-2. The new model for the estimation of surface potential can return to the results obtained based on the Gouy-Chapman model at a low charge density. Therefore, it is implied that the established model that considers the dielectric decrement is valid and widely applicable.

Keywords:  surface potential      colloidal particle      dielectric decrement      charge density      electrolyte  
Received:  28 June 2018      Revised:  07 September 2018      Accepted manuscript online: 
PACS:  68.08.De (Liquid-solid interface structure: measurements and simulations)  
  68.08.-p (Liquid-solid interfaces)  
  82.65.+r (Surface and interface chemistry; heterogeneous catalysis at surfaces)  
  82.45.Un (Dielectric materials in electrochemistry)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 41501240, 41530855, 41501241, and 41877026), the Natural Science Foundation of Chongqing CSTC (Grant No. cstc2018jcyjAX0318), and the Fundamental Research Funds for the Central Universities, China (Grant No. XDJK2017B029).

Corresponding Authors:  Xin-Min Liu     E-mail:  lucimir@163.com

Cite this article: 

Jing Peng(彭景), Wen-Xin Zou(邹温馨), Rui Tian(田锐), Hang Li(李航), Xin-Min Liu(刘新敏) Effects of dielectric decrement on surface potential in a mixed electrolyte solution 2018 Chin. Phys. B 27 126801

[1] Liu X, Li H, Du W, Tian R, Li R and Jiang X 2013 J. Phys. Chem. C 117 6245
[2] Liu X, Li H, Li R, Xie D, Ni J and Wu L 2015 Sci. Rep. 4 5047
[3] Xin Y, Zheng Y X and Yu Y X 2016 Mol. Phys. 114 2328
[4] Hu F, Xu C, Li H, Li S, Yu Z, Li Y and He X 2015 Soil Till. Res. 147 1
[5] Xu C, Li H, Hu F, Li S, Liu X and Li Y 2015 Eur. J. Soil Sci. 66 615
[6] Mugele F, Bera B, Cavalli A, Siretanu I, Maestro A, Duits M, Cohen-Stuart M, Van Den Ende D, Stocker I and Collins I 2015 Sci. Rep. 5 10519
[7] Brogioli D 2009 Phys. Rev. Lett. 103 058501
[8] Trefalt G, Behrens S H and Borkovec M 2016 Langmuir 32 380
[9] Vlachy V 1999 Ann. Rev. Phys. Chem. 50 145
[10] Wang K, Yu Y X and Gao G H 2008 J. Chem. Phys. 128 185101
[11] Peng B and Yu Y X 2009 J. Chem. Phys. 131 134703
[12] Liu X M, Yang G, Li H, Li H, Tian R, Ding W Q and Yuan R 2015 Chin. Phys. B 24 068202
[13] Wan L, Xu S, Liao M, Liu C and Shen P 2014 Physics 43 589 (in Chinese)
[14] Liu Y, Yan E C, Zhao X and Eisenthal K B 2001 Langmuir 17 2063
[15] Yan E C Y, Liu Y and Eisenthal K B 1998 J. Phys. Chem. B 102 6331
[16] Brown M A, Abbas Z, Kleibert A, Green R G, Goel A, May S and Squires T M 2016 Phys. Rev. X 6 011007
[17] Li H, Wei S, Qing C and Yang J 2003 J. Colloid Interface Sci. 258 40
[18] Liu X, Ding W, Tian R, Du W and Li H 2017 Soil Sci. Soc. Am. J. 81 268
[19] Grahame D C 1950 J. Chem. Phys. 18 903
[20] Orl D H 2007 Phys. Rev. Lett. 99 077801
[21] Parkhurst D L and Appelo C A J 2013 Description Input Examples For PHREEQC version 3-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations (USGS)
[22] Hou J and Li H 2009 Soil Sci. Soc. Am. J. 73 1658
[23] Li H, Qing C L, Wei S Q and Jiang X J 2004 J. Colloid Interface Sci. 275 172
[24] Zhao R, van Soestbergen M, Rijnaarts H H M, van der Wal A, Bazant M Z and Biesheuvel P M 2012 J. Colloid Interface Sci. 384 38
[25] Liu X, Tian R, Li R, Ding W, Li H and Yuan R 2015 Proc. Royal Soc. A 471 20150064
[26] Sposito G 1984 The Surface Chemistry of Soils (Oxford/New York: Clarendon Press/Oxford University Press)
[27] Gongadze E, van Rienen U, Kralj-Iglič V and Iglič A 2011 Gen. Physiol. Biophys. 30 130
[28] Mashayak S Y and Aluru N R 2017 J. Chem. Phys. 146 044108
[29] Liu X, Li H, Li R and Tian R 2013 Surf. Sci. 607 197
[30] Gavish N and Promislow K 2016 Phys. Rev. E 94 012611
[31] Low P F 1981 Soil Sci. Soc. Am. J. 45 1074
[32] Parsons D F and Ninham B W 2010 Langmuir 26 1816
[33] Bousse L J, Mostarshed S and Hafeman D 1992 Sensors Actuators B: Chem. 10 67
[34] Perram J W 1973 J. Chem. Soc. Faraday Trans. 69 993
[35] Bowden J W, Posner A M and Quirk J P 1977 Soil Res. 15 121
[36] Stern O 1924 Zeit. Elektrochem 30 508
[1] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[2] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[3] Charge density wave states in phase-engineered monolayer VTe2
Zhi-Li Zhu(朱知力), Zhong-Liu Liu(刘中流), Xu Wu(武旭), Xuan-Yi Li(李轩熠), Jin-An Shi(时金安), Chen Liu(刘晨), Guo-Jian Qian(钱国健), Qi Zheng(郑琦), Li Huang(黄立), Xiao Lin(林晓), Jia-Ou Wang(王嘉欧), Hui Chen(陈辉), Wu Zhou(周武), Jia-Tao Sun(孙家涛), Ye-Liang Wang(王业亮), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(7): 077101.
[4] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[5] Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5
Bin Hu(胡彬), Yuhan Ye(耶郁晗), Zihao Huang(黄子豪), Xianghe Han(韩相和), Zhen Zhao(赵振),Haitao Yang(杨海涛), Hui Chen(陈辉), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(5): 058102.
[6] Copper ion beam emission in solid electrolyte Rb4Cu16I6.5Cl13.5
Tushagu Abudouwufu(吐沙姑·阿不都吾甫), Xiangyu Zhang (张翔宇), Wenbin Zuo (左文彬), Jinbao Luo(罗进宝), Yueqiang Lan(兰越强), Canxin Tian (田灿鑫), Changwei Zou(邹长伟), Alexander Tolstoguzov, and Dejun Fu(付德君). Chin. Phys. B, 2022, 31(4): 040704.
[7] Solid-liquid transition induced by the anisotropic diffusion of colloidal particles
Fu-Jun Lin(蔺福军), Jing-Jing Liao(廖晶晶), Jian-Chun Wu(吴建春), and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(3): 036401.
[8] Enhancing the thermoelectric performance through the mutual interaction between conjugated polyelectrolytes and single-walled carbon nanotubes
Shuxun Wan(万树勋), Zhongming Chen(陈忠明), Liping Hao(郝丽苹), Shichao Wang(王世超), Benzhang Li(李本章), Xiao Li(黎潇), Chengjun Pan(潘成军), and Lei Wang(王雷). Chin. Phys. B, 2022, 31(2): 028104.
[9] Investigation of transport properties of perovskite single crystals by pulsed and DC bias transient current technique
Juan Qin(秦娟), Gang Cao(曹港), Run Xu(徐闰), Jing Lin(林婧), Hua Meng(孟华), Wen-Zhen Wang(王文贞), Zi-Ye Hong(洪子叶), Jian-Cong Cai(蔡健聪), and Dong-Mei Li(李冬梅). Chin. Phys. B, 2022, 31(11): 117102.
[10] Observation of multiple charge density wave phases in epitaxial monolayer 1T-VSe2 film
Junyu Zong(宗君宇), Yang Xie(谢阳), Qinghao Meng(孟庆豪), Qichao Tian(田启超), Wang Chen(陈望), Xuedong Xie(谢学栋), Shaoen Jin(靳少恩), Yongheng Zhang(张永衡), Li Wang(王利), Wei Ren(任伟), Jian Shen(沈健), Aixi Chen(陈爱喜), Pengdong Wang(王鹏栋), Fang-Sen Li(李坊森), Zhaoyang Dong(董召阳), Can Wang(王灿), Jian-Xin Li(李建新), and Yi Zhang(张翼). Chin. Phys. B, 2022, 31(10): 107301.
[11] A density-wave-like transition in the polycrystalline V3Sb2 sample with bilayer kagome lattice
Ningning Wang(王宁宁), Yuhao Gu(顾雨豪), M. A. McGuire, Jiaqiang Yan, Lifen Shi(石利粉), Qi Cui(崔琦), Keyu Chen(陈科宇), Yuxin Wang(王郁欣), Hua Zhang(张华), Huaixin Yang(杨槐馨), Xiaoli Dong(董晓莉), Kun Jiang(蒋坤), Jiangping Hu(胡江平), Bosen Wang(王铂森), Jianping Sun(孙建平), and Jinguang Cheng(程金光). Chin. Phys. B, 2022, 31(1): 017106.
[12] Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure
Bowen Zhang(张博文), Chao An(安超), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Yonghui Zhou(周永惠), Yifang Yuan(袁亦方), Chunhua Chen(陈春华), Lili Zhang(张丽丽), Xiaoping Yang(杨晓萍), and Zhaorong Yang(杨昭荣). Chin. Phys. B, 2021, 30(7): 076201.
[13] Silicon micropillar electrodes of lithiumion batteries used for characterizing electrolyte additives
Fangrong Hu(胡放荣), Mingyang Zhang(张铭扬), Wenbin Qi(起文斌), Jieyun Zheng(郑杰允), Yue Sun(孙悦), Jianyu Kang(康剑宇), Hailong Yu(俞海龙), Qiyu Wang(王其钰), Shijuan Chen(陈世娟), Xinhua Sun(孙新华), Baogang Quan(全保刚), Junjie Li(李俊杰), Changzhi Gu(顾长志), and Hong Li(李泓). Chin. Phys. B, 2021, 30(6): 068202.
[14] Morphologies of a spherical bimodal polyelectrolyte brush induced by polydispersity and solvent selectivity
Qing-Hai Hao(郝清海) and Jie Cheng(成洁). Chin. Phys. B, 2021, 30(6): 068201.
[15] Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations
Wei Hu(胡伟), Wenwei Luo(罗文崴), Hewen Wang(王鹤文), and Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2021, 30(3): 038202.
No Suggested Reading articles found!