Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 123201    DOI: 10.1088/1674-1056/27/12/123201
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Up-conversion luminescence tuning in Er3+-doped ceramic glass by femtosecond laser pulse at different laser powers

Wen-Jing Cheng(程文静)1, Guo Liang(梁果)1, Ping Wu(吴萍)1, Shi-Hua Zhao(赵世华)1, Tian-Qing Jia(贾天卿)2, Zhen-Rong Sun(孙真荣)2, Shi-An Zhang(张诗按)2
1 School of Electronic & Electrical Engineering, Shangqiu Normal University, Shangqiu 476000, China;
2 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 China
Abstract  

The up-conversion luminescence tuning of rare-earth ions is an important research topic for understanding luminescence mechanisms and promoting related applications. In this paper, we experimentally study the up-conversion luminescence tuning of Er3+-doped ceramic glass excited by the unshaped, V-shaped and cosine-shaped femtosecond laser field with different laser powers. The results show that green and red up-conversion luminescence can be effectively tuned by varying the power or spectral phase of the femtosecond laser field. We further analyze the up-conversion luminescence tuning mechanism by considering different excitation processes, including single-photon absorption (SPA), two-photon absorption (TPA), excited state absorption (ESA), and energy transfer up-conversion (ETU). The relative weight of TPA in the whole excitation process can increase with the increase of the laser power, thereby enhancing the intensity ratio between green and red luminescence (I547/I656). However, the second ETU (ETU2) process can generate red luminescence and reduce the green and red luminescence intensity ratio I547/I656, while the third ESA (ESA3) process can produce green luminescence and enhance its control efficiency. Moreover, the up-conversion luminescence tuning mechanism is further validated by observing the up-conversion luminescence intensity, depending on the laser power and the down-conversion luminescence spectrum under the excitation of 400-nm femtosecond laser pulse. These studies can present a clear physical picture that enables us to understand the up-conversion luminescence tuning mechanism in rare-earth ions, and can also provide an opportunity to tune up-conversion luminescence to promote its related applications.

Keywords:  rare-earth ions      up-conversion luminescence      pulse shaping      two-photon absorption  
Received:  23 August 2018      Revised:  26 September 2018      Accepted manuscript online: 
PACS:  32.80.Qk (Coherent control of atomic interactions with photons)  
  32.80.Wr (Other multiphoton processes)  
  61.46.Hk (Nanocrystals)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51132004, 11474096, 11604199, U1704145, and 11747101), the Fund from the Science and Technology Commission of Shanghai Municipality, China (Grant No. 14JC1401500), the Henan Provincial Natural Science Foundation, China (Grant No. 182102210117), and the Higher Educational Key Program of Henan Province of China (Gant Nos. 17A140025 and 16A140030).

Corresponding Authors:  Wen-Jing Cheng, Shi-An Zhang     E-mail:  0110wenjing@163.com;sazhang@phy.ecnu.edu.cn

Cite this article: 

Wen-Jing Cheng(程文静), Guo Liang(梁果), Ping Wu(吴萍), Shi-Hua Zhao(赵世华), Tian-Qing Jia(贾天卿), Zhen-Rong Sun(孙真荣), Shi-An Zhang(张诗按) Up-conversion luminescence tuning in Er3+-doped ceramic glass by femtosecond laser pulse at different laser powers 2018 Chin. Phys. B 27 123201

[1] Auzel F 2004 Chem. Rev. 104 139
[2] Wang F and Liu X 2009 Chem. Soc. Rev. 38 976
[3] Nilsson J, Clarkson W A, Selvas R, Sahu J K, Turner P W, Alam S U and Grudinin A B 2004 Opt. Fiber. Technol. 10 5
[4] Wintner E, Sorokin E and Sorokina I T 2001 Laser Phys. 11 1193
[5] Tessler N, Medvedev V, Kazes M, Kan S and Banin U 2002 Science 295 1506
[6] Zhou P, Wang X, Ma Y, Lü H and Liu Z 2012 Laser Phys. 22 1744
[7] Sivakumar S, Veggel F C J M and Raudsepp M 2005 J. Am. Chem. Soc. 127 12464
[8] Wang H Q, Batentschuk M, Osvet A, Pinna L and Brabec C J 2011 Adv. Mater. 23 2675
[9] Downing E, Hesselink L, Ralston J and Macfarlane R 1996 Science 273 1185
[10] Li Y, Zhang J, Luo Y, Zhang X and Hao Z 2011 J. Mater. Chem. 21 2895
[11] Nyk M, Kumar R, Ohulchanskyy T Y, Bergey E J and Prasad P N 2008 Nano. Lett. 8 3834
[12] Wang F, Tan W B, Zhang Y, Fan X and Wang M 2006 Nanotechnology 17 R1
[13] Yu M, Li F, Chen Z, Hu H, Zhan C, Yang H and Huang C 2009 Anal. Chem. 81 930
[14] Vetrone F, Naccache R, Zamarron A, Fuente A J, Sanz-Rodriguez F, Maestro L M, Rodriguez E M, Jaque D, Sole J G and Capobianco J A 2010 ACS Nano 4 3254
[15] Gai S, Li C, Yang P and Lin J 2014 Chem. Rev. 114 2343
[16] Scheps R 1996 Prog. Quantum Electron. 20 271
[17] Piatkowski D and Mackowski S 2012 Opt. Mater. 34 2055
[18] Wright J C 1976 Up-conversion and excited state energy transfer in rare-earth doped materials (Springer) pp. 239-295
[19] Joubert M 1999 Opt. Mater. 11 181
[20] Deng R, Qin F, Chen R, Huang W, Hong M and Liu X 2015 Nat. Nanotechnol. 10 237
[21] Bettinelli M 2015 Nat. Nanotechnol. 10 203
[22] Wang F and Liu X 2008 J. Am. Chem. Soc. 130 5642
[23] Teng X, Zhu Y, Wei W, Wang S, Huang J, Naccache R, Hu W, Iing A, Tok Y, Han Y, Zhang Q, Fan Q, Huang W, Capobianco J A and Huang L 2012 J. Am. Chem. Soc. 134 8340
[24] Yuan D, Tan M C, Riman R E and Chow G M 2013 J. Phys. Chem. C 117 13297
[25] Yuan D, Yi G S and Chow G M 2009 J. Mater. Res. 24 2042
[26] Tian X, Wu Z, Jia Y, Chen J, Zheng R K, Zhang Y and Luo H 2013 Appl. Phys. Lett. 102 42907
[27] Tikhomirov V K, Chibotaru L F, Saurel D, Gredin P, Mortier M and Moshchalkov V V 2009 Nano. Lett. 9 721
[28] Schietinger S, Aichele T, Wang H Q, Nann T and Benson O 2010 Nano Lett. 10 134
[29] Brites C D S, Lima P P, Silva N J O, Millán A, Amaral V S, Palacio F and Carlos L D 2010 Adv. Mater. 22 4499
[30] Zhou J, Deng J, Zhu H, Chen X, Teng Y, Jia H, Xu S and Qiu J 2013 J. Mater. Chem. C 1 8023
[31] Gainer C F, Joshua G S, De Silva C R and Romanowski M 2011 J. Mater. Chem. 21 18530
[32] Gao D, Tian D, Xiao G, Chong B, Yu G and Pang Q 2015 Opt. Lett. 40 3580
[33] Gao D, Zhang X, Chong B, Xiao G and Tian D 2017 Phys. Chem. Chem. Phys. 19 4288
[34] Zhang S, Xu S, Ding J, Lu C, Jia T, Qiu J and Sun Z 2014 Appl. Phys. Lett. 104 14101
[35] Zhang S, Yao Y, Xu S, Liu P, Ding J, Jia T, Qiu J and Sun Z 2015 Sci. Rep. 5 13337
[36] Shang X, Chen P, Cheng W, Zhou K, Ma J, Feng D, Zhang S, Sun Z, Qiu J and Jia T 2014 J. Appl. Phys. 116 063101
[37] Xu S, Yao Y, Lu C, Ding J, Jia T, Zhang S and Sun Z 2014 Phys. Rev. A 89 053420
[38] Meshulach D and Silberberg Y 1998 Nature 396 239
[39] Yao Y, Zhang S, Zhang H, Ding J, Jia T, Qiu J and Sun Z 2015 Sci. Rep. 4 07295
[1] Simulating the resonance-mediated (1+2)-three-photon absorption enhancement in Pr3+ ions by a rectangle phase modulation
Wenjing Cheng(程文静), Yuan Li(李媛), Hongzhen Qiao(乔红贞), Meng Wang(王蒙), Shaoshuo Ma(马绍朔), Fangjie Shu(舒方杰), Chuanqi Xie(解传奇), and Guo Liang(梁果). Chin. Phys. B, 2022, 31(6): 063201.
[2] Computational design of ratiometric two-photon fluorescent Zn2+ probes based on quinoline and di-2-picolylamine moieties
Zhe Shao(邵哲), Wen-Ying Zhang(张纹莹), and Ke Zhao(赵珂). Chin. Phys. B, 2022, 31(5): 053302.
[3] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[4] Effective model for rare-earth Kitaev materials and its classical Monte Carlo simulation
Mengjie Sun(孙梦杰), Huihang Lin(林慧航), Zheng Zhang(张政), Yanzhen Cai(蔡焱桢), Wei Ren(任玮), Jing Kang(康靖), Jianting Ji(籍建葶), Feng Jin(金峰), Xiaoqun Wang(王孝群), Rong Yu(俞榕), Qingming Zhang(张清明), and Zhengxin Liu(刘正鑫). Chin. Phys. B, 2021, 30(8): 087503.
[5] Zebrafish imaging and two-photon fluorescence imaging using ZnSe quantum dots
Nan-Nan Zhang(张楠楠), Li-Ya Zhou(周立亚), Xiao Liu(刘潇), Zhong-Chao Wei(韦中超), Hai-Ying Liu(刘海英), Sheng Lan(兰胜), Zhao Meng(孟钊), and Hai-Hua Fan(范海华). Chin. Phys. B, 2021, 30(4): 044204.
[6] Ultrafast carrier dynamics of Cu2O thin film induced by two-photon excitation
Jian Liu(刘建), Jing Li(李敬), Kai-Jun Mu(牧凯军), Xin-Wei Shi(史新伟), Jun-Qiao Wang(王俊俏), Miao Mao(毛淼), Shu Chen(陈述), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(11): 114205.
[7] Responsive mechanism and coordination mode effect of a bipyridine-based two-photon fluorescent probe for zinc ion
Han Zhang(张瀚), Zhe Shao(邵哲), Ke Zhao(赵珂). Chin. Phys. B, 2020, 29(8): 083304.
[8] Soliton evolution and control in a two-mode fiber with two-photon absorption
Qianying Li(李倩颖). Chin. Phys. B, 2020, 29(1): 014204.
[9] High-power ultraviolet 278-nm laser from fourth-harmonic generation of an Nd: YAG amplifier in CsB3O5 crystal
Miao He(何苗), Feng Yang(杨峰), Cheng Dong(董程), Zhi-Chao Wang(王志超), Lei Yuan(袁磊), Yi-Ting Xu(徐一汀), Guo-Chun Zhang(张国春), Zhi-Min Wang(王志敏), Yong Bo(薄勇), Qin-Jun Peng(彭钦军), Da-Fu Cui(崔大复), Yi-Cheng Wu(吴以成), Zu-Yan Xu(许祖彦). Chin. Phys. B, 2018, 27(5): 054211.
[10] Responsive mechanism and molecular design of di-2-picolylamine-based two-photon fluorescent probes for zinc ions
Mei-Yu Zhu(朱美玉), Ke Zhao(赵珂), Jun Song(宋军), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2018, 27(2): 023302.
[11] Optical power limiting of ultrashort hyper-Gaussian pulses in cascade three-level system
Ji-Cai Liu(刘纪彩), Fen-Fen Guo(郭芬芬), Ya-Nan Zhao(赵亚男), Xing-Zhe Li(李兴哲). Chin. Phys. B, 2018, 27(10): 104209.
[12] Isomerism and coordination mode effects on two-photon absorption of tris(picolyl)amine-based fluorescent probes for zinc ions
Ke Zhao(赵珂), Jun Song(宋军), Mei-Yu Zhu(朱美玉), Han Zhang(张瀚), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2018, 27(10): 103301.
[13] Simulating resonance-mediated two-photon absorption enhancement in rare-earth ions by a rectangle phase modulation
Da-Long Qi(齐大龙), Ye Zheng(郑烨), Wen-Jing Cheng(程文静), Yun-Hua Yao(姚云华), Lian-Zhong Deng(邓联忠), Dong-Hai Feng(冯东海), Tian-Qing Jia(贾天卿), Zhen-Rong Sun(孙真荣), Shi-An Zhang(张诗按). Chin. Phys. B, 2018, 27(1): 013202.
[14] Responsive mechanism of three novel hypochlorous acid fluorescent probes and solvent effect on their sensing performance
Yong Zhou(周勇), Yun-Kun Wang(王云坤), Xiao-Fei Wang(王晓菲), Yu-Jin Zhang(张玉瑾), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2017, 26(8): 083102.
[15] Up-conversion luminescence polarization control in Er3+-doped NaYF4 nanocrystals
Hui Zhang(张晖), Yun-Hua Yao(姚云华), Shi-An Zhang(张诗按), Chen-Hui Lu(卢晨晖), Zhen-Rong Sun(孙真荣). Chin. Phys. B, 2016, 25(2): 023201.
No Suggested Reading articles found!