Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 120203    DOI: 10.1088/1674-1056/27/12/120203
GENERAL Prev   Next  

Effects of the planarity and heterogeneity of networks on evolutionary two-player games

Xu-Sheng Liu(刘旭升), Zhi-Xi Wu(吴枝喜), Jian-Yue Guan(关剑月)
Institute of Computational Physics and Complex Systems, Lanzhou University, Lanzhou 730000, China
Abstract  

We study the effects of the planarity and heterogeneity of networks on evolutionary two-player symmetric games by considering four different kinds of networks, including two types of heterogeneous networks:the weighted planar stochastic lattice (a planar scale-free network) and the random uncorrelated scale-free network with the same degree distribution as the weighted planar stochastic lattice; and two types of homogeneous networks:the hexagonal lattice and the random regular network with the same degree k0=6 as the hexagonal lattice. Using extensive computer simulations, we found that both the planarity and heterogeneity of the network have a significant influence on the evolution of cooperation, either promotion or inhibition, depending not only on the specific kind of game (the Harmony, Snowdrift, Stag Hunt or Prisoner's Dilemma games), but also on the update rule (the Fermi, replicator or unconditional imitation rules).

Keywords:  evolutionary two-player games      planarity      heterogeneity  
Received:  04 July 2018      Revised:  04 September 2018      Accepted manuscript online: 
PACS:  02.50.Le (Decision theory and game theory)  
  87.23.Ge (Dynamics of social systems)  
  07.05.Tp (Computer modeling and simulation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11575072 and 11475074) and the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2017-172).

Corresponding Authors:  Zhi-Xi Wu, Jian-Yue Guan     E-mail:  wuzhx@lzu.edu.cn;guanjy@lzu.edu.cn

Cite this article: 

Xu-Sheng Liu(刘旭升), Zhi-Xi Wu(吴枝喜), Jian-Yue Guan(关剑月) Effects of the planarity and heterogeneity of networks on evolutionary two-player games 2018 Chin. Phys. B 27 120203

[1] Smith J M and Szathmary E 1997 The Major Transitions in Evolution (Oxford: Oxford University Press)
[2] Rong Z, Li X and Wang X 2007 Phys. Rev. E 76 027101
[3] Rong Z, Yang H X and Wang W X 2010 Phys. Rev. E 82 047101
[4] Sigmund K 2010 The calculus of selfishness (Princeton: Princeton University Press)
[5] Quan J and Wang X J 2011 Chin. Phys. B 20 030203
[6] Zhao L, Zhou X, Liang Z and Wu J R 2012 Chin. Phys. B 21 018701
[7] Hua D Y 2013 Chin. Phys. B 22 040512
[8] Allen B, Lippner G, Chen Y T, Fotouhi B, Momeni N, Yau S T and Nowak M A 2017 Nature 544 227
[9] Yang H X and Tian L 2017 Chaos, Solitons and Fractals 103 159
[10] Yang H X and Wang Z 2017 J. Stat. Mech.: Theor. Exp. 2017 023403
[11] Nowak M A 2006 Evolutionary dynamics (Harvard: Harvard University Press)
[12] Nowak M A and Highfield R 2011 Supercooperators: Altruism, evolution, and why we need each other to succeed (Simon and Schuster)
[13] Nowak M A, Tarnita C E and Antal T 2010 Phil. Trans. Royal Soc. B: Bio. Sci. 365 19
[14] Hofbauer J and Sigmund K 1998 Evolutionary games and population dynamics (Cambridge: Cambridge University Press)
[15] Hofbauer J and Sigmund K 2003 Bull. Am. Math. Soc. 40 479
[16] Hamilton W D 1964 J. Theor. Bio. 7 17
[17] Taylor P D 1992 Evolutionary Ecology 6 352
[18] Foster K R, Wenseleers T and Ratnieks F L 2006 Trends in ecology and evolution 21 57
[19] Trivers R L 1971 The Quarterly Review of Biology 46 35
[20] Milinski M 1987 Nature 325 433
[21] Dugatkin L A 1997 Cooperation among animals: an evolutionary perspective (Oxford: Oxford University Press on Demand)
[22] Wedekind C and Milinski M 2000 Science 288 850
[23] Ohtsuki H and Iwasa Y 2004 J. Theor. Bio. 231 107
[24] Brandt H and Sigmund K 2004 J. Theor. Bio. 231 475
[25] Williams G C and Williams D C 1957 Evolution 11 32
[26] Wilson D S 1975 Proc. Natl. Acad. Sci. 72 143
[27] Taylor P D and Wilson D S 1988 Evolution 42 193
[28] Michod R E 2000 Darwinian dynamics: evolutionary transitions in fitness and individuality (Princeton: Princeton University Press)
[29] Nowak M A 2006 Science 314 1560
[30] Page K M and Nowak M A 2002 J. Theor. Bio. 219 93
[31] Nowak M A and May R M 1992 Nature 359 826
[32] Lieberman E, Hauert C and Nowak M A 2005 Nature 433 312
[33] Killingback T, Doebeli M and Knowlton N 1999 Proc. Roy. Soc. Lond. B: Bio. Sci. 266 1723
[34] Roca C P, Cuesta J A and Sánchez A 2009 Phys. Rev. E 80 046106
[35] Hauert C and Doebeli M 2004 Nature 428 643
[36] Hauert C and Szabó G 2005 Am. J. Phys. 73 405
[37] Santos F C and Pacheco J M 2005 Phys. Rev. Let. 95 098104
[38] Santos F C, Pacheco J M and Lenaerts T 2006 Proc. Natl. Acad. Sci. USA 103 3490
[39] Santos F C and Pacheco J M 2006 J. Evol. Bio. 19 726
[40] Gómez-Gardeñes J, Campillo M, Floría L M and Moreno Y 2007 Phys. Rev. Lett. 98 108103
[41] Andrade J S, Herrmann H J, Andrade R F S and da Silva L R 2005 Phys. Rev. Lett. 94 018702
[42] Zhou T, Yan G and Wang B H 2005 Phys. Rev. E 71 046141
[43] Buesser P and Tomassini M 2012 Phys. Rev. E 86 066107
[44] Hassan M K, Hassan M Z and Pavel N I 2010 New J. Phys. 12 093045
[45] Newman M 2010 Networks: an introduction (Oxford: Oxford University Press)
[46] Catanzaro M, Boguñá M and Pastor-Satorras R 2005 Phys. Rev. E 71 027103
[47] Bollobás B 1998 Modern Graph Theory (New York: Springer)
[48] Langer P, Nowak M A and Hauert C 2008 J. Theor. Bio. 250 634
[49] Licht A N 1999 Yale J. Intl. Lett. 24 61
[50] Szabó G and Töke C 1998 Phys. Rev. E 58 69
[51] Traulsen A, Nowak M A and Pacheco J M 2006 Phys. Rev. E 74 011909
[52] Traulsen A, Claussen J C and Hauert C 2006 Phys. Rev. E 74 011901
[53] Press W H and Dyson F J 2012 Proc. Natl. Acad. Sci. 109 10409
[54] Hao D, Rong Z and Zhou T 2014 Chin. Phys. B 23 078905
[55] Xie Y B, Zhou T, Bai W J, Chen G, Xiao W K and Wang B H 2007 Phys. Rev. E 75 036106
[1] Unpinning the spiral waves by using parameter waves
Lu Peng(彭璐) and Jun Tang(唐军). Chin. Phys. B, 2021, 30(5): 058202.
[2] Dynamic crossover in [VIO2+][Tf2N-]2 ionic liquid
Gan Ren(任淦). Chin. Phys. B, 2021, 30(1): 016105.
[3] Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions
Jinbing Zhang(张晋兵), Qiang Wang(王强), Zexian Cao(曹则贤). Chin. Phys. B, 2020, 29(8): 087804.
[4] Revealing the inhomogeneous surface chemistry on the spherical layered oxide polycrystalline cathode particles
Zhi-Sen Jiang(蒋之森), Shao-Feng Li(李少锋), Zheng-Rui Xu(许正瑞), Dennis Nordlund, Hendrik Ohldag, Piero Pianetta, Jun-Sik Lee, Feng Lin(林锋), Yi-Jin Liu(刘宜晋). Chin. Phys. B, 2020, 29(2): 026103.
[5] Nonperturbative effects of attraction on dynamical behaviors of glass-forming liquids
Xiaoyan Sun(孙晓燕), Haibo Zhang(张海波), Lijin Wang(王利近), Zexin Zhang(张泽新), and Yuqiang Ma(马余强)\ccclink. Chin. Phys. B, 2020, 29(12): 126201.
[6] Metabasin dynamics of supercooled polymer melt
Jian Li(李健), Bo-Kai Zhang(张博凯). Chin. Phys. B, 2019, 28(12): 126101.
[7] Quantitative heterogeneity and subgroup classification based on motility of breast cancer cells
Ling Xiong(熊玲), Yanping Liu(刘艳平), Ruchuan Liu(刘如川), Wei Yuan(袁伟), Gao Wang(王高), Yi He(何益), Jianwei Shuai(帅建伟), Yang Jiao(焦阳), Xixiang Zhang(张溪祥), Weijing Han(韩伟静), Junle Qu(屈军乐), Liyu Liu(刘雳宇). Chin. Phys. B, 2019, 28(10): 108701.
[8] Entrainment range affected by the heterogeneity in the amplitude relaxation rate of suprachiasmatic nucleus neurons
Chang-Gui Gu(顾长贵), Ping Wang(王萍), Hui-Jie Yang(杨会杰). Chin. Phys. B, 2019, 28(1): 018701.
[9] Orienting the future of bio-macromolecular electron microscopy
Fei Sun(孙飞). Chin. Phys. B, 2018, 27(6): 063601.
[10] The determinant factors for map resolutions obtained using CryoEM single particle imaging method
Yihua Wang(王义华), Daqi Yu(余大启), Qi Ouyang(欧阳颀), Haiguang Liu(刘海广). Chin. Phys. B, 2018, 27(12): 128702.
[11] Spatial heterogeneity in liquid-liquid phase transition
Yun-Rui Duan(段云瑞), Tao Li(李涛), Wei-Kang Wu(吴维康), Jie Li(李洁), Xu-Yan Zhou(周戌燕), Si-Da Liu(刘思达), Hui Li(李辉). Chin. Phys. B, 2017, 26(3): 036401.
[12] Abnormal breakdown of Stokes-Einstein relation in liquid aluminium
Chen-Hui Li (李晨辉), Xiu-Jun Han(韩秀君), Ying-Wei Luan(栾英伟), Jian-Guo Li(李建国). Chin. Phys. B, 2017, 26(1): 016102.
[13] Secondary relaxation and dynamic heterogeneity in metallic glasses: A brief review
J C Qiao(乔吉超), Q Wang, D Crespo, Y Yang(杨勇), J M Pelletier. Chin. Phys. B, 2017, 26(1): 016402.
[14] Dynamic feature analysis in bidirectional pedestrian flows
Xiao-Xia Yang(杨晓霞), Winnie Daamen, Serge Paul Hoogendoorn, Hai-Rong Dong(董海荣), Xiu-Ming Yao(姚秀明). Chin. Phys. B, 2016, 25(2): 028901.
[15] Dynamical behaviour of an epidemic on complex networks with population mobility
Zhang Hai-Feng(张海峰), Small Michael, Fu Xin-Chu(傅新楚), and Wang Bing-Hong(汪秉宏). Chin. Phys. B, 2009, 18(9): 3639-3646.
No Suggested Reading articles found!