Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 113102    DOI: 10.1088/1674-1056/27/11/113102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Ethylene glycol solution-induced DNA conformational transitions

Nan Zhang(张楠)1, Ming-Ru Li(李明儒)2, Feng-Shou Zhang(张丰收)1,2,3
1 Key Laboratory of Beam Technology of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China;
2 Beijing Radiation Center, Beijing 100875, China;
3 Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, China
Abstract  

We study the properties of the ethylene glycol solutions and the conformational transitions of DNA segment in the ethylene glycol solutions by molecular dynamics simulations based on GROMACS. The hydrogen network structures of water-water and ethylene glycol-water are reinforced by ethylene glycol molecules when the concentrations of the solutions increase from 0% to 80%. As illustrated by the results, conformation of the double-stranded DNA in ethylene glycol solutions, although more compact, is similar to the structure of DNA in the aqueous solutions. In contrast, the DNA structure is an A-B hybrid state in the ethanol/water mixed solution. A fraying of terminal base-pairs is observed for the terminal cytosine. The ethylene glycol molecules preferentially form a ring structure around the phosphate groups to influence DNA conformation by hydrogen interactions, while water molecules tend to reside in the grooves. The repulsion between the negatively charged phosphate groups is screened by ethylene glycol molecules, preventing the repulsion from unwinding and extending the helix and thus making the conformation of DNA more compact.

Keywords:  DNA conformational transitions      ethylene glycol      molecular dynamics simulations  
Received:  10 July 2018      Revised:  26 August 2018      Accepted manuscript online: 
PACS:  31.15.xv (Molecular dynamics and other numerical methods)  
  36.20.Ey (Conformation (statistics and dynamics))  
  36.20.Hb (Configuration (bonds, dimensions))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11635003, 11025524, and 11161130520), the National Basic Research Program of China (Grant No. 2010CB832903), and the European Commissions 7th Framework Programme (FP7-PEOPLE-2010-IRSES) (Grant No. 269131).

Corresponding Authors:  Feng-Shou Zhang     E-mail:  fszhang@bnu.edu.cn

Cite this article: 

Nan Zhang(张楠), Ming-Ru Li(李明儒), Feng-Shou Zhang(张丰收) Ethylene glycol solution-induced DNA conformational transitions 2018 Chin. Phys. B 27 113102

[1] Chaplin M 2006 Nat. Rev. Mol. Cell Bio. 7 861
[2] Huang Z Q, Yang R Y, Jiang W Z and Zhang Q L 2016 Chin. Phys. Lett. 33 013101
[3] Abolfath R M, van Duin A C T and Brabec T 2011 J. Phys. Chem. A 115 11045
[4] Wang X, Li M, Ye F F and Zhou X 2017 Acta Phys. Sin. 66 150201(inChinese)
[5] Cyphers S, Ruff E F, Behr J M, Chodera J D and Levinson N M 2017 Nat. Chem. Biol. 13 402
[6] Ulrich K, Galvosas P, Kärger J and Grinberg F 2009 Phys. Rev. Lett. 102 037801
[7] Fernández A 2014 J. Chem. Phys. 140 221102
[8] Lynden-Bell R M and Debenedetti P G 2005 J. Phys. Chem. B 109 6527
[9] Ball P 2005 Nature 436 1084
[10] Gu B, Zhang F S, Wang Z P and Zhou H Y 2008 Phys. Rev. Lett. 100 088104
[11] Errington J R and Debenedetti P G 2001 Nature 409 318
[12] Chakraborty D and Wales D J 2017 Phys. Chem. Chem. Phys. 19 878
[13] Samanta S, Mukherjee S, Chakrabarti J and Bhattacharyya D 2009 J. Chem. Phys. 130 115103
[14] Banavali N K and Roux B 2005 J. Am. Chem. Soc. 127 6866
[15] Lange A W and Herbert J M 2009 J. Am. Chem. Soc. 131 3913
[16] Shen X, Atamas N A and Zhang F S 2012 Phys. Rev. E 85 051913
[17] Maaloum M, Beker A F and Muller P 2011 Phys. Rev. E 83 031903
[18] Wang Y W and Yang G C 2017 Chin. Phys. B 26 128706
[19] Lindahl T 2016 Nat. Rev. Mol. Cell Bio. 17 335
[20] Eliasson R, Hammarsten E and Lindahl T 1962 Biotechnol. Bioeng. 4 53
[21] Anagnostopoulos C and Spizizen J 1961 J. Bacteriol. 81 741
[22] Pogozelski W K and Tullius T D 1998 Chem. Rev. 98 1089
[23] Tullius T D and Greenbaum J A 2005 Curr. Opin. Chem. Biol. 9 127
[24] Aydogan B, Bolch W E, Swarts S G, Turner J E and David T 2008 Radiat. Res. 169 223
[25] Friedland W, Jacob P, Paretzke H G, Merzagora M and Ottolenghi A1999 Radiat. Environ. Biophys. 38 39
[26] Abolfath R M, Biswas P K, Rajnarayanam R, Brabec T, Kodym R andPapiez L 2012 J. Phys. Chem. A 116 3940
[27] Merzel F, Fontaine-Vive F, Johnson M R and Kearley G J 2007 Phys. Rev. E 76 031917
[28] Smirnov D A, Morley M, Shin E, Spielman R S and Cheung V G 2009 Nature 459 587
[29] Rak J, Chomicz L, Wiczk J, Westphal K, Zdrowowicz M, Wityk P,Zyndul M, Makurat S and Golon Ł 2015 J. Phys. Chem. B 119 8227
[30] Hamelberg D, McFail-Isom L, Williams L D and Wilson W D 2000 J. Am. Chem. Soc. 122 10513
[31] Korolev N, Lyubartsev A P, Laaksonen A and Nordenskiold L 2003 Nucleic Acids Res. 31 5971
[32] Noy A, Pérez A, Laughton C A and Orozco M 2007 Nucleic Acids Res. 35 3330
[33] Pastor N 2005 Biophys. J. 88 3262
[34] Freddolino P L, Arkhipov A S, Larson S B, McPherson A and Schultem K 2006 Structure 14 437
[35] Shen H, Cheng W and Zhang F S 2015 RSC Adv. 5 9627
[36] Martínez L, Andrade R, Birgin E G and Martínez J M 2009 J. Comput. Chem. 30 2157
[37] Schweitzer B I, Mikita T, Kellogg G W, Gardner K H and Beardsley GP 1994 Biochemistry 33 11460
[38] Dans P D, Danilāne L, Ivani I, Dršata T, Lankaš F, Hospital A, Walther J, Pujagut R I, Battistini F, Gelpí J L, Lavery R and Orozco M 2016 Nucleic Acids Res. 44 4052
[39] Pérez A, Luque F J and Orozco M 2007 J. Am. Chem. Soc. 129 14739
[40] Dršata T, Pérez A, Orozco M, Morozov A V, Šponer J and Lankaš F 2013 J. Chem Theory Comput. 9 707
[41] Mark P and Nilsson L 2002 J. Phys. Chem. B 106 9440
[42] Ivani I, Dans P D, Noy A, Pérez A, Faustino I, Hospital A, Walther J, Andrio P, Goñi R, Balaceanu A, Portella G, Battistini F, Gelpí J L,González C, Vendruscolo M, Laughton C A, Harris S A, Case D A and Orozco M 2016 Nat. Methods 13 55
[43] Darden T, York D and Pedersen L 1998 J. Chem. Phys. 98 10089
[44] Allen M P and Tildesley D J 1989 Computer Simulation of Liquids (Oxford University Press)
[45] Hess B, Bekker H, Berendsen H J C and Fraaije J G E M 1997 J. Comput. Chem. 18 1463
[46] Berendsen H J C, Grigera J R and Straatsma T P 1987 J. Phys. Chem. 91 6269
[47] Zhang F S and Lynden-Bell R M 2005 Phy. Rev. E 71 021502
[48] Lindahl E, Hess B and van der Spoel D 2001 J. Mol. Model. 7 306
[49] Tsierkezos N G and Molinou I E 1998 J. Chem. Eng. Data 43 989
[50] Nose S and Klein M L 1983 Mol. Phys. 50 1055
[51] Berendsen H J C, Postma J P M, van Gunsteren W F, DiNola A andHaak J R 1984 J. Chem. Phys. 81 3684
[52] Lavery R, Moakher M, Maddocks J H, Petkeviciute D and ZakrzewskaK 2009 Nucleic Acids Res. 37 5917
[53] Lavery R and Sklenar H 1989 J. Biomol. Struct. Dyn. 6 655
[54] Kumar R, Schmidt J R and Skinner J L 2007 J. Chem. Phys. 126 204107
[55] Herskovits T T 1962 Arch. Biochem. Biophys. 97 474
[56] Zgarbová M, Otyepka M, Šponer J, Lankaš F and Jurečka P 2014 J. Chem. Theory Comput. 10 3177
[57] Leroy J L, Kochoyan M, Huynh-Dinh T and Guéron M 1988 J. Mol. Biol. 200 223
[58] Andreatta D, Sen S, Lustres J L P, Kovalenko S A, Ernsting N P, Murphy C J, Coleman R S and Berg M A 2006 J. Am. Chem. Soc. 128 6885
[59] McConnell K J and Beveridge D L 2000 J. Mol. Biol. 304 803
[60] Dickerson R E, Drew H R, Conner B N, Wing R M, Fratini A V andKopka M L 1982 Science 216 475
[61] Allahyarov E, Gompper G and Lowen H 2013 Phys. Rev. E 69 041904
[62] Saenger W, Hunter W N and Kennard O 1986 Nature 324 385
[63] Hartmann B, Piazzola D and Lavery R 1993 Nucleic Acids Res. 21 561
[64] Schwieters C D and Clore G M 2007 Biochemistry 46 1152
[65] Djuranovic D and Hartmann B 2004 Biopolymers 73 356
[66] Heddi B, Oguey C, Lavelle C, Foloppe N and Hartmann B 2010 Nucleic Acids Res. 38 1034
[67] Wecker K, Bonnet M C and Meurs E F 2002 Nucleic Acids Res. 30 4452
[68] Madhumalar A and Bansal M 2005 J. Biomol. Struct. Dyn. 23 13
[69] Dans P D, Faustino I, Battistini F, Zakrzewska K, Lavery R and OrozcoM 2014 Nucleic Acids Res. 42 11304
[1] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[2] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[3] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[4] Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins
Shouqin Lü(吕守芹), Qihan Ding(丁奇寒), Mingkun Zhang(张明焜), and Mian Long(龙勉). Chin. Phys. B, 2021, 30(3): 038701.
[5] Identification of key residues in protein functional movements by using molecular dynamics simulations combined with a perturbation-response scanning method
Jun-Bao Ma(马君宝), Wei-Bu Wang(王韦卜), and Ji-Guo Su(苏计国). Chin. Phys. B, 2021, 30(10): 108701.
[6] Structural and dynamical mechanisms of a naturally occurring variant of the human prion protein in preventing prion conversion
Yiming Tang(唐一鸣), Yifei Yao(姚逸飞), and Guanghong Wei(韦广红)†. Chin. Phys. B, 2020, 29(10): 108710.
[7] Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons
Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏). Chin. Phys. B, 2019, 28(1): 016501.
[8] Accurate quantification of hydration number for polyethylene glycol molecules
Wei Guo(郭伟), Lishan Zhao(赵立山), Xin Gao(高欣), Zexian Cao(曹则贤), Qiang Wang(王强). Chin. Phys. B, 2018, 27(5): 055101.
[9] Thermal conduction of one-dimensional carbon nanomaterials and nanoarchitectures
Haifei Zhan(占海飞), Yuantong Gu(顾元通). Chin. Phys. B, 2018, 27(3): 038103.
[10] Effect of isotope doping on phonon thermal conductivity of silicene nanoribbons: A molecular dynamics study
Run-Feng Xu(徐润峰), Kui Han(韩奎), Hai-Peng Li(李海鹏). Chin. Phys. B, 2018, 27(2): 026801.
[11] Numerical simulations of dense granular flow in a two-dimensional channel:The role of exit position
Tingwei Wang(王廷伟), Xin Li(李鑫), Qianqian Wu(武倩倩), Tengfei Jiao(矫滕菲), Xingyi Liu(刘行易), Min Sun(孙敏), Fenglan Hu(胡凤兰), Decai Huang(黄德财). Chin. Phys. B, 2018, 27(12): 124704.
[12] Molecular dynamics simulation of decomposition and thermal conductivity of methane hydrate in porous media
Ping Guo(郭平), Yi-Kun Pan(潘意坤), Long-Long Li(李龙龙), Bin Tang(唐斌). Chin. Phys. B, 2017, 26(7): 073101.
[13] Diffusion and thermite reaction process of film-honeycomb Al/NiO nanothermite: Molecular dynamics simulations using ReaxFF reactive force field
Hua-Dong Zeng(曾华东), Zhi-Yang Zhu(祝志阳), Ji-Dong Zhang(张吉东), Xin-Lu Cheng(程新路). Chin. Phys. B, 2017, 26(5): 056101.
[14] Tunable monoenergy positron annihilation spectroscopy of polyethylene glycol thin films
Peng Kuang(况鹏), Xiao-Long Han(韩小龙), Xing-Zhong Cao(曹兴忠), Rui Xia(夏锐), Peng Zhang(张鹏), Bao-Yi Wang(王宝义). Chin. Phys. B, 2017, 26(5): 057802.
[15] Molecular dynamics simulations of the effects of sodium dodecyl sulfate on lipid bilayer
Bin Xu(徐斌), Wen-Qiang Lin(林文强), Xiao-Gang Wang(汪小刚), Song-wei Zeng(曾松伟), Guo-Quan Zhou(周国泉), Jun-Lang Chen(陈均朗). Chin. Phys. B, 2017, 26(3): 033103.
No Suggested Reading articles found!