Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 107102    DOI: 10.1088/1674-1056/27/10/107102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First principles study of stability, mechanical, and electronic properties of chromium silicides

Bo Ren(任博), De-Hong Lu(卢德宏), Rong Zhou(周荣), De-Peng Ji(姬德朋), Ming-Yu Hu(胡明钰), Jing Feng(冯晶)
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
Abstract  

Through the first principles calculations, the chemical stability, mechanical, and electronic properties of chromium silicides are predicted. Estimating enthalpies and binding energies, density state density and electron density distribution are combined to analyse the thermodynamic stability and physical properties of chrome-silicon binary compounds. The chromium silicide includes Cr3Si, Cr5Si3, CrSi, and CrSi2. The chemical stability and the information about electronic structure, mechanical properties, Debye temperature, and anisotropy properties are obtained by density functional theory and Debye quasi-harmonic approximation. Meanwhile, the calculation of elastic modulus shows that Cr3Si has the highest body modulus value (251 GPa) and CrSi2 possesses the highest shear modulus (169.5 GPa) and Young's modulus (394.9 GPa). In addition, the Debye temperature and the speed of sound of these Cr-Si compounds are also calculated. Since the calculated bulk modulus is different from Young's modulus anisotropy index, and also different from Young's modulus of a three-dimensional surface shape, the different mechanical anisotropies of all the compounds are obtained.

Keywords:  density functional theory      electronic structures      mechanical properties      anisotropy  
Received:  17 May 2018      Revised:  03 July 2018      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.23.-k (Electronic structure of disordered solids)  
  62.20.-x (Mechanical properties of solids)  
  75.30.Gw (Magnetic anisotropy)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 51265019).

Corresponding Authors:  De-Hong Lu     E-mail:  ldhongkust@126.com

Cite this article: 

Bo Ren(任博), De-Hong Lu(卢德宏), Rong Zhou(周荣), De-Peng Ji(姬德朋), Ming-Yu Hu(胡明钰), Jing Feng(冯晶) First principles study of stability, mechanical, and electronic properties of chromium silicides 2018 Chin. Phys. B 27 107102

[1] Mattheiss L 1991 Phys. Rev. B 43 12549
[2] Shah D, Berczik D, Anton D and Hecht R 1992 Mater. Sci. Eng. A 155 45
[3] Qian-Gang F, He-Jun L, Xiao-Hong S, Xiao-Ling L, Ke-Zhi L and Min H 2006 Appl. Surf. Sci. 252 3475
[4] Yeh C L and Lin J Z 2013 Intermetallics 33 126
[5] Duan G and Wang H M 2002 Scr. Mater. 46 107
[6] Okamoto H 2001 J. Phase Equilibria 22 593
[7] Du Y and Schuster J C 2000 J. Phase Equilibria 21 281
[8] Chen H, Du Y and Schuster J C 2009 Calphad 33 211
[9] Krijn M and Eppenga R 1991 Phys. Rev. B 44 9042
[10] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.-Condes. Matter 14 2717
[11] Gao S, Xiang H, Xu B, Xia Y D, Yin J and Liu Z G 2016 Chin. Phys. Lett. 33 083101
[12] Liu G, Liu S B, Xu B, Ouyang C Y and Song H Y 2015 J. Appl. Phys. 112 666
[13] Gokhale A B and Abbaschian G J 1987 J. Phase Equilibria 8 474
[14] Macdonald A H 1978 Phys. Rev. B 18 5897
[15] Haiyang Z and Shunle D 2013 Chin. Phys. Lett. 30 43102
[16] Pan L J, Zhang J, Chen W G and Tang Y N 2015 Chin. Phys. Lett. 32 036101
[17] Cui S and Jung I H 2017 J. Alloys Compd. 708 887
[18] Zhou S, Xie Q, Yan W and Chen Q 2009 Sci. Chin.-Phys. Mech. Astron. 52 46
[19] Chart T G 2013 Met. Sci. 9 504
[20] Jauch W, Schultz A J and Heger G 1987 J. Appl. Crystallogr. 20 117
[21] Ma J, Gu Y, Shi L, Chen L, Yang Z and Qian Y 2004 J. Alloys Compd. 376 176
[22] Meschel S V and Kleppa O J 1998 J. Alloys Compd. 267 128
[23] Jurisch M and Behr G 1979 Acta Phys. Acad. Sci. Hung. 47 201
[24] Coughanowr C A, Ansara I and Lukas H L 1994 Calphad-Comput. Coupling Ph. Diagrams Thermochem. 18 125
[25] Dai Y Y, Li Y, Peng S M, Long X G, Fei G and Xiaotao Z U 2010 Chin. Phys. Lett. 27 42
[26] Song Y J, Zhang Q H, Shen X, Ni X D, Yao Y and Yu R C 2014 Chin. Phys. Lett. 31 017501
[27] Huang L T, Chen Z, Wang Y X and Lu Y L 2017 Chin. Phys. B 26 103103
[28] Xie X D, Hao Y Y, Zhang R G and Wang B J 2012 Acta Phys. Sin. 61 855 (in Chinese)
[29] Raheleh, Pilevar, Shahri, Arsalan and Akhtar 2017 Chin. Phys. B 26 093107
[30] Chong X Y, Jiang Y H, Zhou R and Feng J 2014 Comput. Mater. Sci. 87 19
[31] Feng J, Xiao B, Chen J, Du Y, Yu J and Zhou R 2011 Mater. 32 3231
[32] Wen M and Wang C Y 2017 Chin. Phys. B 26 093106
[33] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 054115
[34] Patil S K R, Khare S V, Tuttle B R, Bording J K and Kodambaka S 2006 Phys. Rev. B 73 4118
[35] Bei H, George E P and Pharr G M 2004 Scr. Mater. 51 875
[36] Nakamura M 1994 Metall. Mater. Trans. A 25 331
[37] Hermet P, Khalil M, Viennois R, Beaudhuin M, Bourgogne D and Ravot D 2015 RSC Adv. 5 19106
[38] Zhang X, Wang Z and Qiao Y 2011 Acta Mater. 59 5584
[39] Zhou W, Liu L, Li B, Wu P and Song Q 2009 Comput. Mater. Sci. 46 921
[40] Zinoveva G P, Andreeva L P and Geld P V 1974 Phys. Status Solidi 23 711
[41] Hill R W 1952 Proc. Phys. Soc. 65 349
[42] Xiao B, Feng J, Zhou C T, Jiang Y H and Zhou R 2011 J. RSC Adv. 109 083521
[43] Chong X, Jiang Y, Zhou R and Feng J 2014 RSC Adv. 4 44959
[44] Wang J and Sun J 2010 Phys. Status Solidi 247 921
[45] Feng J, Xiao B, Zhou R, Pan W and Clarke D R 2012 Acta Mater. 60 3380
[46] Anderson O L 1963 J. Phys. Chem. Solids 24 909
[47] Li Y, Gao Y, Xiao B, Min T, Fan Z, Ma S and Xu L 2010 J. Alloys Compd. 502 28
[48] Liu Y Z, Jiang Y H, Zhou R and Feng J 2014 J. Alloys Compd. 582 500
[49] Feng J, Xiao B, Wan C L, Qu Z X, Huang Z C, Chen J C, Zhou R and Pan W 2011 Acta Mater. 59 1742
[50] Guechi A, Merabet A, Chegaar M, Bouhemadou A and Guechi N 2015 J. Alloys Compd. 623 219
[51] Feng J, Xiao B, Zhou R and Pan W 2013 Acta Mater. 61 7364
[52] Sun L, Gao Y, Xiao B, Li Y and Wang G 2013 J. Alloys Compd. 579 457
[53] Panda K B and Chandran K S R 2006 Acta Mater. 54 1641
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[3] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[6] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[7] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[8] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[9] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[10] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[11] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[12] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[13] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[14] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[15] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
No Suggested Reading articles found!