Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 107101    DOI: 10.1088/1674-1056/27/10/107101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of Mn doping on mechanical properties and electronic structure of WCoB ternary boride by first-principles calculations

Tong Zhang(张桐)1,2, Hai-Qing Yin(尹海清)1,2, Cong Zhang(张聪)1, Xuan-Hui Qu(曲选辉)1,2, Qing-Jun Zheng(郑清军)3
1 Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China;
2 Beijing Key Laboratory of Materials Genome Initiative, University of Science and Technology Beijing, Beijing 100083, China;
3 Kennametal Inc, 1600 Technology Way, PA 15650, USA
Abstract  

The first-principles calculations are performed to investigate the structural, mechanical property, hardness, and electronic structure of WCoB with 0, 8.33, 16.67, 25, and 33.33 at.% Mn doping content and W2CoB2 with 0, 10, and 20 at.% Mn doping content. The cohesive energy and formation energy indicate that all the structures can retain good structural stability. According to the calculated elastic constants, Mn is responsible for the increase of ductility and Poisson's ratio and the decrease of Young's modulus, shear modulus, and bulk modulus. By using the population analysis and mechanical properties, the hardness is characterized through using the five hardness models and is found to decrease with the Mn doping content increasing. The calculated electronic structure indicates that the formation of a B-Mn covalent bond and a W-Mn metallic bond contribute to the decreasing of the mechanical properties.

Keywords:  Mn doping      WCoB      electronic structure      first-principles calculations  
Received:  17 April 2018      Revised:  20 July 2018      Accepted manuscript online: 
PACS:  71.15.Dx (Computational methodology (Brillouin zone sampling, iterative diagonalization, pseudopotential construction))  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: 

Project supported by the National Key Research and Development Program, China (Grant No. 2016YFB0700503), the National High Technology Research and Development Program of China (Grant No. 2015AA034201), the Beijing Science and Technology Plan, China (Grant No. D161100002416001), the National Natural Science Foundation of China (Grant No. 51172018), and the Kennametal Inc., China.

Corresponding Authors:  Hai-Qing Yin     E-mail:  hqyin@ustb.edu.cn

Cite this article: 

Tong Zhang(张桐), Hai-Qing Yin(尹海清), Cong Zhang(张聪), Xuan-Hui Qu(曲选辉), Qing-Jun Zheng(郑清军) Effect of Mn doping on mechanical properties and electronic structure of WCoB ternary boride by first-principles calculations 2018 Chin. Phys. B 27 107101

[1] Takagi K 2006 J. Solid State Chem. 179 2809
[2] Yamasaki Y, Nishi M and Takagi K 2004 J. Solid State Chem. 177 551
[3] Nishiyama K, Keino M, Furuyama Y, et al. 2003 J. Alloys Compd. 355 97
[4] Takagi K, Ohira S, Ide T, Watanabe S and Kondo Y 1987 Metal Powder Rep. 42 483
[5] Komai M, Yamasaki Y, Takagi K I and Watanabe T 1992 Adv. Powder Metal. Particulate Mater. 8 81
[6] Tashiro H, Hirata K, Yamasaki Y and Takagi K 2007 Mater. Sci. Forum. Trans. Tech. Pub. 534 377
[7] Haschke H, Nowotny H and Benesovsky F 1966 Monatshefte für Chemie und verwandte Teile anderer Wissenschaften 97 1459
[8] Hofmann H and Petzow G 1986 J. Less Common. Metals 117 121
[9] Zahariev Z T and Marinov M I 1993 J. Alloys Compd. 201 1
[10] Hu B, Pan Y, Wang Q, Zhou H and Xu M 2011 Heat Treat. Metals 6 008
[11] Takagi K 1987 Int. J. Powder Met. 23 157
[12] Ke D Q, Pan Y J, Xu Y Y, Yang L and Wu R 2017 Appl. Mech. Mater. Trans. Tech. Pub. 872 56
[13] Yu H, Zheng Y, Liu W, Zheng J and Xiong W 2010 Mater. Design 31 2680
[14] Yu H, Zheng Y, Liu W, Zheng J and Xiong W 2010 Int. J. Refrac. Metals Hard Mater. 28 286
[15] Yamasaki Y, Nishi M and Takagi K 2004 J. Solid State Chem. 177 551
[16] Yang F, Wu Y, Han J and Meng J 2016 J. Alloys Compd. 665 373
[17] Takagi K 2003 Metals Mater. Int. 9 467
[18] Komai M, Isobe Y and Takagi K 1993 J. Jpn. Soc. Powder Powder Metallurgy 40 38
[19] Ke D, Pan Y, Lu X, Hong B and Zhang H 2015 Cera. Int. 41 15235
[20] Wang X, Chen C, Feng S, Wei X and Li Y 2017 Chin. Phys. B 26 127402
[21] Zhang Z X, Zhang Y, Xue W H, Jia W, Zhang C L, Li C X and Cui P 2017 Chin. Phys. B 26 123102
[22] He W, Huang H, Liu Z and Ma X 2018 Chin. Phys. B 27 016201
[23] Xuan S K 2017 Acta Phys. Sin. 66 237401 (in Chinese)
[24] Lin Y H, Tong C C, Pan Y, Liu W Y and Singh A 2017 Mod. Phys. Lett. B 31 1750138
[25] Wang S, Pan Y, Lin Y and Tong C 2018 Comput. Mater. Sci. 146 18
[26] Xu Y, Pan Y, Ke D, Yang L and Wang P 2017 Mater. Sci. Technol. 25 59
[27] Hohenberg P and Kohn W 1965 Phys. Rev. 136 B864
[28] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[29] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[30] Vanderbilt D 1990 Phys. Rev. B 41 7892
[31] Kuzma I B and Chepiga M V 1969 X-ray investigation of the tungsten-iron-boron and tungsten-cobalt-boron systems. Lvov State Univ., 1969
[32] Rieger W, Nowotny H and Benesovsky F 1966 Monatshefte für Chemie und verwandte Teile anderer Wissenschaften 97 378
[33] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[34] Wu Z, Zhao E, Xiang H, Hao X, Liu X and Meng J 2007 Phys. Rev. B 76 054115
[35] Ravindran P, Fast L, Korzhavyi P A and Johansson B 1998 J. Appl. Phys. 84 4891
[36] Hill R 1952 Proc. Phys. Soc. A 65 349
[37] Lewandowski J J, Wang W H and Greer A L 2005 Phil. Mag. Lett. 85 77
[38] Wang J X, Chen Z B and Gao Y C 2018 J. Phys. Chem. Solids 116 72
[39] Aouadi S M 2006 J. Appl. Phys. 99 053507
[40] Reuss A 1929 J. Appl. Math. Mech. 9 49
[41] Zhou C T, Xing J D, Xiao B, Feng J, Xie X J and Chen Y H 2009 Comput. Mater. Sci. 44 1056
[42] Pugh S F 1954 London, Edinburgh Dublin Phil. Mag. J. Sci. 45 823
[43] Chen X Q, Niu H, Li D and Li Y 2011 Intermetallics 19 1275
[44] Gao F, He J, Wu E, Liu S, Yu D, Li D, Zhang S and Tian Y 2003 Phys. Rev. Lett. 91 015502
[45] Zhang T, Yin H, Zhang C, Qu X H and Zheng Q J 2018 Mod. Phys. Lett. B 2018 1850240
[46] Yu H B, Wang W H and Bai H Y 2010 Appl. Phys. Lett. 96 081902
[47] Jiang P G, Wang Z B, Yan Y B and Liu W J 2017 Acta Phys. Sin. 66 246801 (in Chinese)
[48] Xu W W, Han J J, Wang Y, Wang C P, Liu X J and Liu Z K 2013 Acta Materialia 61 5437
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[3] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[9] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[12] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[13] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[14] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[15] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
No Suggested Reading articles found!