Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 104207    DOI: 10.1088/1674-1056/27/10/104207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Total ionizing dose effects in pinned photodiode complementary metal-oxide-semiconductor transistor active pixel sensor

Lin-Dong Ma(马林东)1,2,3, Yu-Dong Li(李豫东)1,2, Lin Wen(文林)1,2, Jie Feng(冯婕)1,2, Xiang Zhang(张翔)1,2,3, Tian-Hui Wang(王田珲)1,2,3, Yu-Long Cai(蔡毓龙)1,2,3, Zhi-Ming Wang(王志铭)1,2,3, Qi Guo(郭旗)1,2
1 Key Laboratory of Functional Materials and Devices for Special Environments of Chinese Academy of Sciences, Xinjiang Technical Institute of Physics & Chemistry, Urumqi 830011, China;
2 Xinjiang Key Laboratory of Electronic Information Material and Device, Urumqi 830011, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

A pinned photodiode complementary metal-oxide-semiconductor transistor (CMOS) active pixel sensor is exposed to 60Co to evaluate the performance for space applications. The sample is irradiated with a dose rate of 50 rad (SiO2)/s and a total dose of 100 krad (SiO2), and the photodiode is kept unbiased. The degradation of dark current, full well capacity, and quantum efficiency induced by the total ionizing dose damage effect are investigated. It is found that the dark current increases mainly from the shallow trench isolation (STI) surrounding the pinned photodiode. Further results suggests that the decreasing of full well capacity due to the increase in the density, is induced by the total ionizing dose (TID) effect, of the trap interface, which also leads to the degradation of quantum efficiency at shorter wavelengths.

Keywords:  CMOS active pixel sensor      dark current      quantum efficiency  
Received:  28 April 2018      Revised:  24 May 2018      Accepted manuscript online: 
PACS:  42.88.+h (Environmental and radiation effects on optical elements, devices, and systems)  
  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
  42.50.-p (Quantum optics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11675259) and the West Light Foundation of the Chinese Academy of Sciences (Grant Nos. 2016-QNXZ-B-8 and 2016-QNXZ-B-2).

Corresponding Authors:  Qi Guo     E-mail:  guoqi@ms.xjb.ac.cn

Cite this article: 

Lin-Dong Ma(马林东), Yu-Dong Li(李豫东), Lin Wen(文林), Jie Feng(冯婕), Xiang Zhang(张翔), Tian-Hui Wang(王田珲), Yu-Long Cai(蔡毓龙), Zhi-Ming Wang(王志铭), Qi Guo(郭旗) Total ionizing dose effects in pinned photodiode complementary metal-oxide-semiconductor transistor active pixel sensor 2018 Chin. Phys. B 27 104207

[1] Wang F, Li Y D, Guo Q, Wang B, Zhang X Y, Wen L and He C F 2016 Acta Phys. Sin. 65 024212 (in Chinese)
[2] Wu K T, Hwang S J and Lee H H 2017 Sensors 17 1004
[3] Xue Y, Wang Z, Chen W, Liu M, He B and Yao Z 2017 Sensors 17 2781
[4] Hopkinson G R 2000 IEEE Trans. Nucl. Sci. 47 2480
[5] Cohen M and David J P 2000 IEEE Trans. Nucl. Sci. 47 2485
[6] Eid E S, Chan T Y, Fossurn E R and Tsai R H 2001 IEEE Trans. Nucl. Sci. 48 1796
[7] Goiffon V, Magnan P, SaintPe O, Bernard F, Roll and G 2008 IEEE Trans. Nucl. Sci. 55 3494
[8] Coath R E, Crooks J P, Godbeer A and Wilson M D 2009 IEEE Nucl. Sci. Symposium Conference Record 57 1310
[9] Rao P R Wang X and Theuwissen A J 2008 Solid-State Electron. 52 1407
[10] Goiffon V, Virmontois C, Magnan P, Cervantes P, Place S, Gaillardin M and Martin G P 2012 IEEE Trans. Nucl. Sci. 59 918
[11] Mheen B, Song Y J and Theuwissen A J P 2008 IEEE Electron Dev. Lett. 29 347
[12] Pelamatti A, Goiffon V, Estribeau M, Cervantes P and Magnan P 2013 IEEE Electron Dev. Lett. 34 900
[13] Krymski A and Konstantin F 2005 Proc. IEEE Workshop CCD Adv. Image Sensors
[14] Vincent G, Magali E and Olivier M 2012 IEEE Trans. Nucl. Sci. 59 2878
[15] Cao C, Zhang B, Wu L S, Li N and Wang J F 2014 Chin. Phys. B 23 124215
[16] Puliyankot V and Raymond J H 2012 IEEE Electron Dev. 59 26
[17] Oldham T R and Mclean F B 2003 IEEE Trans. Nucl. Sci. 50 483
[1] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
[2] Optical polarization characteristics for AlGaN-based light-emitting diodes with AlGaN multilayer structure as well layer
Lu Xue(薛露), Yi Li(李毅), Mei Ge(葛梅), Mei-Yu Wang(王美玉), and You-Hua Zhu(朱友华). Chin. Phys. B, 2021, 30(4): 047802.
[3] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[4] Effect of AlGaN interlayer on luminous efficiency and reliability of GaN-based green LEDs on silicon substrate
Jiao-Xin Guo(郭娇欣), Jie Ding(丁杰), Chun-Lan Mo(莫春兰), Chang-Da Zheng(郑畅达), Shuan Pan(潘拴), Feng-Yi Jiang(江风益). Chin. Phys. B, 2020, 29(4): 047303.
[5] Infrared light-emitting diodes based on colloidal PbSe/PbS core/shell nanocrystals
Byung-Ryool Hyun, Mikita Marus, Huaying Zhong(钟华英), Depeng Li(李德鹏), Haochen Liu(刘皓宸), Yue Xie(谢阅), Weon-kyu Koh, Bing Xu(徐冰), Yanjun Liu(刘言军), Xiao Wei Sun(孙小卫). Chin. Phys. B, 2020, 29(1): 018503.
[6] Enhanced performance of AlGaN-based ultraviolet light-emitting diodes with linearly graded AlGaN inserting layer in electron blocking layer
Guang Li(李光), Lin-Yuan Wang(王林媛), Wei-Dong Song(宋伟东), Jian Jiang(姜健), Xing-Jun Luo(罗幸君), Jia-Qi Guo(郭佳琦), Long-Fei He(贺龙飞), Kang Zhang(张康), Qi-Bao Wu(吴启保), Shu-Ti Li(李述体). Chin. Phys. B, 2019, 28(5): 058502.
[7] InP quantum dots-based electroluminescent devices
Qianqian Wu(吴倩倩), Fan Cao(曹璠), Lingmei Kong(孔令媚), Xuyong Yang(杨绪勇). Chin. Phys. B, 2019, 28(11): 118103.
[8] Scalability of dark current in silicon PIN photodiode
Ya-Jie Feng(丰亚洁), Chong Li(李冲), Qiao-Li Liu(刘巧莉), Hua-Qiang Wang(王华强), An-Qi Hu(胡安琪), Xiao-Ying He(何晓颖), Xia Guo(郭霞). Chin. Phys. B, 2018, 27(4): 048501.
[9] Analysis of proton and γ-ray radiation effects on CMOS active pixel sensors
Lindong Ma(马林东), Yudong Li(李豫东), Qi Guo(郭旗), Lin Wen(文林), Dong Zhou(周东), Jie Feng(冯婕), Yuan Liu(刘元), Junzhe Zeng(曾骏哲), Xiang Zhang(张翔), Tianhui Wang(王田珲). Chin. Phys. B, 2017, 26(11): 114212.
[10] Comparison of blue-green response between transmission-mode GaAsP-and GaAs-based photocathodes grown by molecular beam epitaxy
Gang-Cheng Jiao(焦岗成), Zheng-Tang Liu(刘正堂), Hui Guo(郭晖), Yi-Jun Zhang(张益军). Chin. Phys. B, 2016, 25(4): 048505.
[11] Current spreading in GaN-based light-emitting diodes
Qiang Li(李强), Yufeng Li(李虞锋), Minyan Zhang(张敏妍), Wen Ding(丁文), Feng Yun(云峰). Chin. Phys. B, 2016, 25(11): 117102.
[12] Effect of chloride introduction on the optical properties in Eu3+-doped fluorozirconate glasses
Han Jin(金含), Zhao-Jun Mo(莫兆军), Xiao-Song Zhang(张晓松), Lin-Lin Yuan(苑琳琳), Ming Yan(晏明), Lan Li(李岚). Chin. Phys. B, 2016, 25(10): 103201.
[13] Effects of polarization and p-type GaN resistivity on the spectral response of InGaN/GaN multiple quantum well solar cells
Yang Jing (杨静), Zhao De-Gang (赵德刚), Jiang De-Sheng (江德生), Liu Zong-Shun (刘宗顺), Chen Ping (陈平), Li Liang (李亮), Wu Liang-Liang (吴亮亮), Le Ling-Cong (乐伶聪), Li Xiao-Jing (李晓静), He Xiao-Guang (何晓光), Wang Hui (王辉), Zhu Jian-Jun (朱建军), Zhang Shu-Ming (张书明), Zhang Bao-Shun (张宝顺), Yang Hui (杨辉). Chin. Phys. B, 2014, 23(6): 068801.
[14] A quantum efficiency analytical model for complementary metal–oxide–semiconductor image pixels with a pinned photodiode structure
Cao Chen (曹琛), Zhang Bing (张冰), Wu Long-Sheng (吴龙胜), Li Na (李娜), Wang Jun-Feng (王俊峰). Chin. Phys. B, 2014, 23(12): 124215.
[15] The enhancement of light-emitting efficiency using GaN-based multiple quantum well light-emitting diodes with nanopillar arrays
Wan Tu-Tu (万图图), Ye Zhan-Qi (叶展圻), Tao Tao (陶涛), Xie Zi-Li (谢自力), Zhang Rong (张荣), Liu Bin (刘斌), Xiu Xiang-Qian (修向前), Li Yi (李毅), Han Ping (韩平), Shi Yi (施毅), Zheng You-Dou (郑有炓). Chin. Phys. B, 2013, 22(8): 088102.
No Suggested Reading articles found!