Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 104201    DOI: 10.1088/1674-1056/27/10/104201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Nonparaxial propagation properties of the chirped Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis

Yizuo Chen(陈奕佐), Guanwen Zhao(赵官文), Feng Ye(叶峰), Chuangjie Xu(许创杰), Dongmei Deng(邓冬梅)
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510631, China
Abstract  In this article, we investigate the nonparaxial propagation properties of the chirped Airy Gaussian vortex (CAiGV) beams in uniaxial crystals orthogonal to the optical axis analytically and numerically. We discuss how the linear chirp parameters, the quadratic chirp parameters, and the Gaussian factors influence the nonparaxial propagation dynamics of the CAiGV beams. The intensity, the energy flow, the beam center, and the angular momentum of the CAiGV beams are deeply investigated. It is shown that the Gaussian factors have a great effect on the intensity and the centroid positions of the CAiGV beams. With the Gaussian factors increasing, the intensity of CAiGV beams decreases rapidly. The main lobes of the transverse intensity distribution of the CAiGV beams are similar to triangles.
Keywords:  Chirped Airy Gaussian vortex beams      energy flow      angular momentum      nonparaxial propagation  
Received:  21 May 2018      Revised:  20 June 2018      Accepted manuscript online: 
PACS:  42.25.-p (Wave optics)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11775083 and 11374108)
Corresponding Authors:  Dongmei Deng     E-mail:  dmdeng@263.net

Cite this article: 

Yizuo Chen(陈奕佐), Guanwen Zhao(赵官文), Feng Ye(叶峰), Chuangjie Xu(许创杰), Dongmei Deng(邓冬梅) Nonparaxial propagation properties of the chirped Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis 2018 Chin. Phys. B 27 104201

[1] Berry M V and Balazs N L 1979 Am. J. Phys. 47 264
[2] Siviloglou G A and Christodoulides D N 2007 Opt. Lett. 32 979
[3] Broky J, Siviloglou G A, Dogariu A and Christodoulides D N 2008 Opt. Express 16 12880
[4] Zhou J X, Liu Y C, Ke Y G, Luo H L and Wen S C 2015 Opt. Lett. 40 3193
[5] Deng D M and Guo Q 2009 New. J. Phys. 11 103029
[6] Deng D, Du S L and Guo Q 2013 Opt. Commun. 289 6
[7] Lin H C and Pu J X 2012 Chin. Phys. B 21 054201
[8] Siviloglou G A, Broky J, Dogariu A and Christodoulides D N 2008 Opt. Lett. 33 207
[9] Yu W H, Zhao R H, Deng F, Huang J Y, Chen C D, Yang X B, Zhao Y P and Deng D M 2016 Chin. Phys. B 25 044201
[10] Deng D M 2011 Eur. Phys. J. D 65 553
[11] Abdollahpour D, Suntsov S, Papazoglou D G and Tzortzakis S 2010 Phys. Rev. Lett. 105 253901
[12] Gu Y L and Gbur G 2010 Opt. Lett. 35 3456
[13] Polynkin P, Koleskik M, Moloney J V, Siviloglou G A and Christodoulides D N 2009 Science 324 229
[14] Huang J Y, Liang Z J, Deng F, Yu W H, Zhao R H, Chen B, Yang X B and Deng D M 2015 J. Opt. Soc. Am. A 32 2104
[15] Chen B, Chen C D, Deng D M and Peng X 2015 J. Opt. Soc. Am. B 32 173
[16] Vasara A, Turunen J and Friberg A T 1989 J. Opt. Soc. Am. A 6 1748
[17] Abramochkin E, Losevsky N and Volostnikov V 1997 Opt. Commun. 141 59
[18] Zhang Y Q, Beli M R, Zhang L, Zhong W P, Zhu D Y, Wang R M and Zhang Y P 2015 Opt. Express 23 10467
[19] Ciattoni A, Cincotti G and Palma C 2002 J. Opt. Soc. Am. A 19 1422
[20] Deng F and Deng D M 2016 Opt. Commun. 380 280
[21] Zhang J B, Zhou K Z, Liang J H, Lai Z Y, Yang X B and Deng D M 2018 Opt. Express 26 1290
[22] Ciattoni A and Palma C 2003 J. Opt. Soc. Am. A 20 2163
[23] Sztul H I and Alfano R R 2008 Opt. Express 16 9411
[1] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[2] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[3] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[4] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[5] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[6] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[7] Shared aperture metasurface antenna for electromagnetic vortices generation with different topological charges
He Wang(王贺), Yong-Feng Li(李勇峰), and Shao-Bo Qu(屈绍波). Chin. Phys. B, 2021, 30(8): 084101.
[8] Local dynamical characteristics of Bessel beams upon reflection near the Brewster angle
Zhi-Wei Cui(崔志伟), Shen-Yan Guo(郭沈言), Yuan-Fei Hui(惠元飞), Ju Wang(王举), and Yi-Ping Han(韩一平). Chin. Phys. B, 2021, 30(4): 044201.
[9] Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces
Yunping Qi(祁云平) Baohe Zhang(张宝和), Jinghui Ding(丁京徽), Ting Zhang(张婷), Xiangxian Wang(王向贤), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024211.
[10] Generation of a large orbital angular momentum beam via an optical fiber winding around a curved path and its application
Wei-Han Tan(谭维翰), Chao-Ying Zhao(赵超樱), Yi-Chao Meng(孟义朝), and Qi-Zhi Guo(郭奇志). Chin. Phys. B, 2021, 30(10): 104208.
[11] Nonparaxial propagation of radially polarized chirped Airy beams in uniaxial crystal orthogonal to the optical axis
Yaohui Chen(陈耀辉), Lixun Wu(吴理汛), Zhixiong Mo(莫智雄), Lican Wu(吴利灿), and Dongmei Deng(邓冬梅). Chin. Phys. B, 2021, 30(1): 014204.
[12] Hybrid vector beams with non-uniform orbital angular momentum density induced by designed azimuthal polarization gradient
Lei Han(韩磊), Shuxia Qi(齐淑霞), Sheng Liu(刘圣), Peng Li(李鹏), Huachao Cheng(程华超), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(9): 094203.
[13] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[14] Electromagnetic field of a relativistic electron vortex beam
Changyong Lei(雷长勇), Guangjiong Dong(董光炯). Chin. Phys. B, 2020, 29(8): 084102.
[15] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞). Chin. Phys. B, 2020, 29(8): 087301.
No Suggested Reading articles found!