Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 096103    DOI: 10.1088/1674-1056/27/9/096103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of microstructure on 3He migration in TiT1.9 films

Haifeng Wang(王海峰), Shuming Peng(彭述明), Wei Ding(丁伟), Huahai Shen(申华海), Weidu Wang(王维笃), Xiaosong Zhou(周晓松), Xinggui Long(龙兴贵)
Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  

Two kinds of films were prepared to study the effect of microstructure on helium migration in Ti tritides. Both films showed different release behaviors and helium bubble distributions. In the film consisting of columnar grains, a two-layered structure was observed. Inclusions with a strip feature were found at the grain boundary, and no helium bubbles were distributed in these inclusions. However, helium preferred to migrate to the boundaries of these inclusions. Bubble linkage as a ribbon-like feature developed parallel to the film surface in the film consisting of columnar grains. More cracks were developed at the grain boundaries of the film consisting of columnar grains, although the helium content in the film consisting of columnar grains was less than that in the film consisting of equiaxed grains. A surface region with a small number of bubbles, or “depleted zone”, was observed near the surface. The cracks extending to the film surface were the pathways of the critical helium released from the film. The helium migration was strongly influenced by the grain microstructure.

Keywords:  helium bubble      Ti tritide      microstructure  
Received:  11 March 2018      Revised:  27 May 2018      Accepted manuscript online: 
PACS:  61.72.Qq (Microscopic defects (voids, inclusions, etc.))  
  81.40.Wx (Radiation treatment)  
  68.55.-a (Thin film structure and morphology)  
Corresponding Authors:  Shuming Peng     E-mail:  pengshuming@caep.cn

Cite this article: 

Haifeng Wang(王海峰), Shuming Peng(彭述明), Wei Ding(丁伟), Huahai Shen(申华海), Weidu Wang(王维笃), Xiaosong Zhou(周晓松), Xinggui Long(龙兴贵) Effect of microstructure on 3He migration in TiT1.9 films 2018 Chin. Phys. B 27 096103

[1] Beavis L C and Kass W J 1977 J. Vac. Sci. Technol. 14 509
[2] Ding W, Long X G and Liang J H 2008 At. Engergy Sci. Technol 42 944 (in Chinese)
[3] Snow C S, Brewer L N, Gelles D S, Rodrguez M A, Kotula P G, Banks J C, Mangan M A and Browning J F 2008 J. Nucl. Mater. 374 147
[4] Chen R C, Yang L and Dai Y Y 2012 Chin. Phys. B 21 056601
[5] Zu X T, Yang L, Gao F, Peng S M, Heinisch H L, Long X G and Kurtz R J 2009 Phys. Rev. B 80 054104
[6] Zhang B L, Wang J and Hou Q 2011 Chin. Phys. B 20 036105
[7] Gong H F, Yan Y, Zhang X S, Lv W, Liu T and Ren Q S 2017 Chin. Phys. B 26 093104
[8] Thiébaut S, Décamps B, Pénisson J M, Limacher B, and Guégan A Percheron 2000 J. Nucl. Mater. 277 217
[9] Schober T, Trinkaus H and Lässer R 1986 J. Nucl. Mater. 141 453
[10] Bond G M, Browning J F and Snow C S 2010 J. Appl. Phys. 107 083514
[11] Snow C S, Browning J F, Bond G M, Rodriguez M A and Knapp J A 2014 J. Nucl. Mater. 453 296
[12] Trinkaus H and Singh B N 2003 J. Nucl. Mater. 323 229
[13] Gao X, Luo P and Chang H L 2015 Chin. Phys. Lett. 32 76101
[14] Chen M 2011 Acta Phys. Sin. 60 126602 (in Chinese)
[15] Parish C M, Snow C S, Kammler D R and Brewer L N 2010 J. Nucl. Mat. 403 191
[16] Parish C M, Snow C S, and Brewer L N 2009 J. Mater. Res. 24 1868
[17] Liang L, Tan X H, Xiang W, Wang Y, Cheng Y L and Ma M W 2015 Acta Phys. Sin. 64 046103 (in Chinese)
[18] Zhou Y L, Deng A H, Li R S, Zhang B L and Hou Q 2011 Acta Phys. Sin. 60 046604 (in Chinese)
[19] Shen H H, Peng S M, Long X G, Zhou X S, Yang L, Liu J H, Sun Q Q and Zu X T 2012 Chin. Phys. B 21 076101
[20] Shen H H, Peng S M, Long X G, Zhou X S, Yang L and Zu X T 2012 Vacuum 86 1097
[21] Savaloni H, Player M A, Gu E and Marr G V 1992 Vacuum 43 965
[22] Peng S M, Shen H H, Long X G, Zhou X S, Yang L and Zu X T 2012 Acta Phys. Sin. 61 176106
[23] Shen H H, Zu H Y, Peng S M, Yang L, Zhou X S, Sun K, Xiang X and Zu X T 2013 Mater. Lett. 106 259
[24] Savaloni H, Taherizadeh A and Zendehnam A 2004 Physica B 349 44
[25] Guo D C, Jiang X D, Huang J, Wang F R, Liu H J, Xiang X, Yang G X, Zheng W G and Zu X T 2014 Opt. Express 22 29020
[26] Zhou X S, Long, X G and Peng S M 2010 J.Nucl.Mater. 396 223
[27] Savaloni H and Player M A 1995 Vacuum 46 167
[28] Trinkaus H 1986 Radiat. Eff. 101 91
[29] Schober T and Farrell K 1989 J. Nucl. Mater. 168 171
[30] Schroeder H 1989 J. Nucl. Mater. 155-157 1032
[31] Chen J, Hung P and Trinkaus H 2000 Phys. Rev. B 61 12923
[32] Singh B N, Leffers T and Green W V 1984 J. Nucl. Mater. 125 287
[33] Grobenor C R M, Hentzell H T G and Smith D A 1984 Acta Metall. 32 773
[34] Rodriguez M A, Browning J F and Frazer C S 2007 Powder Diffr. 22 118
[35] Beavis L C and Miglionico C J 1972 J. Less-Common Met. 27 201
[36] Schober T and Trinkaus H 1991 J. Appl. Phys. 70 729
[37] Schober T and Trinkaus H 1990 J. Appl. Phys. 67 7587
[38] Mitchell D J and Provo J L 1985 J. Appl. Phys. 57 1855
[1] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[2] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[3] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[4] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[5] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[6] Helium bubble formation and evolution in NiMo-Y2O3 alloy under He ion irradiation
Awen Liu(刘阿文), Hefei Huang(黄鹤飞), Jizhao Liu(刘继召), Zhenbo Zhu(朱振博), and Yan Li(李燕). Chin. Phys. B, 2022, 31(4): 046102.
[7] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[8] Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure
Zheng Cao(曹正), Qing-Qiao Fu(傅晴俏), Hui Gu(顾辉), Zhen Tian(田震), Xinba Yaer(新巴雅尔), Juan-Juan Xing(邢娟娟), Lei Miao(苗蕾), Xiao-Huan Wang(王晓欢), Hui-Min Liu(刘慧敏), and Jun Wang(王俊). Chin. Phys. B, 2021, 30(9): 097204.
[9] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
[10] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
[11] In-situ TEM observation of the evolution of helium bubbles in Mo during He+ irradiation and post-irradiation annealing
Yi-Peng Li(李奕鹏), Guang Ran(冉广), Xin-Yi Liu(刘歆翌), Xi Qiu(邱玺), Qing Han(韩晴), Wen-Jie Li(李文杰), and Yi-Jia Guo(郭熠佳). Chin. Phys. B, 2021, 30(8): 086109.
[12] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
[13] Evolution of helium bubbles in nickel-based alloy by post-implantation annealing
Rui Zhu(朱睿), Qin Zhou(周钦), Li Shi(史力), Li-Bin Sun(孙立斌), Xin-Xin Wu(吴莘馨), Sha-Sha Lv(吕沙沙), and Zheng-Cao Li(李正操). Chin. Phys. B, 2021, 30(8): 086102.
[14] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[15] Effect of helium concentration on irradiation damage of Fe-ion irradiated SIMP steel at 300 ℃ and 450 ℃
Zhen Yang(杨振), Junyuan Yang(杨浚源), Qing Liao(廖庆), Shuai Xu(徐帅), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056107.
No Suggested Reading articles found!