Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 097309    DOI: 10.1088/1674-1056/27/9/097309
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of SiN: Hx passivation layer on the reverse gate leakage current in GaN HEMTs

Sheng Zhang(张昇)1,2, Ke Wei(魏珂)2, Yang Xiao(肖洋)1, Xiao-Hua Ma(马晓华)1, Yi-Chuan Zhang(张一川)2, Guo-Guo Liu(刘果果)2, Tian-Min Lei(雷天民)1, Ying-Kui Zheng(郑英奎)2, Sen Huang(黄森)2, Ning Wang(汪宁)2, Muhammad Asif2, Xin-Yu Liu(刘新宇)2
1 School of Advanced Materials and Nanotechnology, Xi'dian University, Xi'an 710071, China;
2 High-Frequency High-Voltage Device and Integrated Circuits Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  

This paper concentrates on the impact of SiN passivation layer deposited by plasma-enhanced chemical vapor deposition (PECVD) on the Schottky characteristics in GaN high electron mobility transistors (HEMTs). Three types of SiN layers with different deposition conditions were deposited on GaN HEMTs. Atomic force microscope (AFM), capacitance-voltage (C-V), and Fourier transform infrared (FTIR) measurement were used to analyze the surface morphology, the electrical characterization, and the chemical bonding of SiN thin films, respectively. The better surface morphology was achieved from the device with lower gate leakage current. The fixed positive charge Qf was extracted from C-V curves of Al/SiN/Si structures and quite different density of trap states (in the order of magnitude of 1011-1012 cm-2) was observed. It was found that the least trap states were in accordance with the lowest gate leakage current. Furthermore, the chemical bonds and the %H in Si-H and N-H were figured from FTIR measurement, demonstrating an increase in the density of Qf with the increasing %H in N-H. It reveals that the effect of SiN passivation can be improved in GaN-based HEMTs by modulating %H in Si-H and N-H, thus achieving a better Schottky characteristics.

Keywords:  SiN passivation      the gate leakage current      Qf      FTIR  
Received:  28 March 2018      Revised:  25 May 2018      Accepted manuscript online: 
PACS:  73.61.Ey (III-V semiconductors)  
  73.61.-r (Electrical properties of specific thin films)  
  72.80.Ey (III-V and II-VI semiconductors)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
Corresponding Authors:  Ke Wei     E-mail:  weike@ime.ac.cn

Cite this article: 

Sheng Zhang(张昇), Ke Wei(魏珂), Yang Xiao(肖洋), Xiao-Hua Ma(马晓华), Yi-Chuan Zhang(张一川), Guo-Guo Liu(刘果果), Tian-Min Lei(雷天民), Ying-Kui Zheng(郑英奎), Sen Huang(黄森), Ning Wang(汪宁), Muhammad Asif, Xin-Yu Liu(刘新宇) Effect of SiN: Hx passivation layer on the reverse gate leakage current in GaN HEMTs 2018 Chin. Phys. B 27 097309

[1] Wong M, Keller S, Sansaptak N, Denninghoff D, Kolluri S, Brown D, Lu J, Fichtenbaum N, Ahmadi E and Singisetti U 2013 Semicond. Sci. Tech. 28 074009
[2] Mishra U K, Shen L, Kazior T E and Wu Y F 2008 Proc. IEEE 96 287
[3] Soltani A, Gerbedoen J C, Cordier Y, Ducatteau D, Rousseau M, Chmielowska M, Ramdani M and De Jaeger J C 2013 IEEE Electron. Dev. Lett. 34 490
[4] Tang Z K, Jiang Q M, Lu Y Y, Huang S, Yang S, Tang X and Chen K J 2013 IEEE Electron. Dev. Lett. 34 1373
[5] Chen K J and Zhou C 2011 Phys. Status Solidi A 208 434
[6] Chen F, Romijn I, Weeber A, Tan J, Hallam B and Cotter J 2007 Proc. 22nd European Photovoltaic Solar Energy Conference Milan, Italy, pp. 1053-1060
[7] Weeber A W, Rieffe H C, Sinke W C and Soppe W J 2004 Proc. 19th European Photovoltaic Solar Energy Conference Paris, France, pp.1005-1008
[8] Weeber A W, Rieffe H C, Romijn I G, Sinke W C and Soppe W J 2005 Proc. 31st IEEEPVSC Conference Florida, USA, pp. 1043-1046
[9] Brett H, Budi T and Stuart W 2012 Sol. Energ. Mat. Sol. C 96 173
[10] Jia X J, Zhou C L, Zhu J J, Zhou S and Wang W J 2016 Chin. Phys. B 25 127301
[11] Garcia S, Martil I, Diaz G, Castan E, Duenas S and Fernandez M 1998 J. Appl. Phys. 83 332
[12] Romero M F, Sanz M M, Tanarro I, Jimenez A and Munoz E 2010 J. Phys. D 43 495202
[13] Meyer D J 2008 Surface Passivation Studies of AlGaN/GaN High Electron Mobility Transistors (ProQuest LLC 3346348)
[14] Yue Y Z, Hao Y, Zhang J C and Feng Q 2006 IEEE Electron Dev. Lett. 857
[15] Wang X H, Huang S, Zheng Y K, Wei K, Chen X J, Liu G G, Yuan T T, Luo W J, Pang L, Jiang H J, Li J F, Zhao C, Zhang H X and Liu X Y 2015 IEEE Electron. Dev. Lett. 36 7
[16] Sze S M 2008 Physics of Semiconductor Devices (Xi'an) pp. 151-163
[17] Zhou C L, Zhu J J, Foss S E, Haug H, Nordseth Q, Marstein E S and Wang W J 2015 Energy Procedia 77 434
[18] Huang S, Jiang Q, Yang S, Tang Z and Chen K J 2013 IEEE Electron. Dev. Lett. 34 193
[19] Rostaing J C, Cros Y, Gujrathi S C and Poulain S 1987 J. Non-Crytal. Solids 97 1051
[20] Giorgis F, Giuliana F, Pirri C F, Tresso E, Summonte C, Rizzoli R, Galloni F, Desalvo A and Rava P 1998 Philos. Mag. B 77 925
[21] Yoo J, Dhungel S K and Yi J 2007 Thin Solid Films 515 5000
[22] Lanford W A and Rand M J 1978 J. Appl. Phys. 49 2473
[23] Hirao T, Setsune K, Kitagawa M, Kamada T, Wasa K, Tsukamoto K and Izumi T 1988 Jpn. J. Appl. Phys. Part 1 27 1406
[24] Krick D T, Lenahan P M and Kanicki J 1988 J. Appl. Phys. 64 3558
[25] Robertson J 1991 Philos. Mag. B 63 47
[26] Aberle A 1999 University New South Wales 69 98
[27] Mackel H and Ludemann R 2002 J. Appl. Phys. 92 2602
[28] Prabhakaran K, Kobayashi Y and Ogino T 1998 Appl. Surf. Sci. 130 182
[1] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[2] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[3] Effect of metal fluorides on chromium ions doped bismuth borate glasses for optical applications
L Haritha, K Chandra Sekhar, R Nagaraju, G Ramadevudu, Vasanth G Sathe, Md. Shareefuddin. Chin. Phys. B, 2019, 28(3): 038101.
[4] ATR-FTIR spectroscopic studies on density changes of fused silica induced by localized CO2 laser treatment
Zhang Chuan-Chao (张传超), Zhang Li-Juan (张丽娟), Liao Wei (廖威), Yan Zhong-Hua (晏中华), Chen Jing (陈静), Jiang Yi-Lan (蒋一岚), Wang Hai-Jun (王海军), Luan Xiao-Yu (栾晓雨), Ye Ya-Yun (叶亚云), Zheng Wan-Guo (郑万国), Yuan Xiao-Dong (袁晓东). Chin. Phys. B, 2015, 24(2): 024220.
[5] The effects of fast neutron irradiation on oxygen in Czochralski silicon
Chen Gui-Feng(陈贵锋), Yan Wen-Bo(阎文博), Chen Hong-Jian(陈洪建), Li Xing-Hua(李兴华), and Li Yang-Xian(李养贤). Chin. Phys. B, 2009, 18(1): 293-297.
[6] Retrieval algorithm of quantitative analysis of passive Fourier transform infrared (FTRD) remote sensing measurements of chemical gas cloud from measuring the transmissivity by passive remote Fourier transform infrared
Liu Zhi-Ming (刘志明), Liu Wen-Qing (刘文清), Gao Min-Guang (高闽光), Tong Jing-Jing (童晶晶), Zhang Tian-Shu (张天舒), Xu Liang (徐 亮), Wei Xiu-Li (魏秀丽). Chin. Phys. B, 2008, 17(11): 4184-4192.
[7] Intertwisted fibrillar diamond-like carbon films prepared by electron cyclotron resonance microwave plasma enhanced chemical vapour deposition
Yang Wu-Bao (杨武保), Wang Jiu-Li (王久丽), Zhang Gu-Ling (张谷令), Fan Song-Hua (范松华), Liu Chi-Zi (刘赤子), Yang Si-Ze (杨思泽). Chin. Phys. B, 2003, 12(11): 1257-1260.
No Suggested Reading articles found!