Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 087802    DOI: 10.1088/1674-1056/27/8/087802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

High-performance lens antenna using high refractive index metamaterials

Lai-Jun Wang(王来军)1, Qiao-Hong Chen(陈巧红)1, Fa-Long Yu(余发龙)1, Xi Gao(高喜)1,2
1 School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China;
2 Guangxi Key Laboratory of Wireless Wideband Communication & Signal Processing, Guilin 541004, China
Abstract  In this paper, a high refractive index metamaterial (HRM), whose element is composed of bilayer square patch (BSP) spaced by a dielectric plate, is proposed. By reducing the thickness of the dielectric plate and the gap between adjacent patches, the BSP can effectively enhance capacitive coupling and simultaneously suppress diamagnetic response, which significantly increases the refractive index of the proposed metamaterial. Furthermore, the high refractive index region is far away from the resonant region of the metamaterial, resulting in broadband. Based on these characteristics of BSP, a gradient refractive index (GRIN) lens with thin thickness (0.34λ0, where λ0 is the wavelength at 5.75 GHz) is designed. By using this lens, we then design a circularly polarized horn antenna with high performance. The measurement results show that the 3-dB axial ratio bandwidth is 34.8% (4.75 GHz~6.75 GHz) and the antenna gain in this frequency range is increased by an average value of 3.4 dB. The proposed method opens up a new avenue to design high-performance antenna.
Keywords:  circularly polarized horn antenna      high refractive index      lens      metamaterial.  
Received:  12 December 2017      Revised:  04 May 2018      Accepted manuscript online: 
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  84.40.Ba (Antennas: theory, components and accessories)  
  84.90.+a (Other topics in electronics, radiowave and microwave technology, and direct energy conversion and storage)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61761010 and 61461016), in part by the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2015jjBB7002), in part by the Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing, and in part by the Innovation Project of GUET Graduate Education (Grant No. 2018JCX24).
Corresponding Authors:  Xi Gao     E-mail:  gao_xi76@163.com

Cite this article: 

Lai-Jun Wang(王来军), Qiao-Hong Chen(陈巧红), Fa-Long Yu(余发龙), Xi Gao(高喜) High-performance lens antenna using high refractive index metamaterials 2018 Chin. Phys. B 27 087802

[1] Kock W E 1948 Bell Labs Tech. J. 27 58
[2] Kock W E 1946 Proc. IRE 34 828
[3] Greegor R B, Parazzoli C, Nielse J, Thompson M A, Tanielian M H and Smith D R 2005 Appl. Phys. Lett. 87 091114
[4] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Science 334 333
[5] Li H P, Wang G M, Liang J G and Gao X J 2016 Prog. Electromag. Res. 155 115
[6] Wan X, Jia S L, Cui T J and Zhao Y J 2016 Sci. Rep. 6 25639
[7] Pfeiffer C, Emani N K, Shaltout A M, Boltasseva A, Shalaev V M and Grbic A 2014 Nano Lett. 14 2491
[8] Wu R Y, Li Y B, Wu W, Shi C B and Cui T J 2017 IEEE Trans. Anten. Propag. 65 3481
[9] Smith D R, Mock J J, Starr A F and Schurig D 2005 Phys. Rev. E 71 036609
[10] Ma H F and Cui T J 2010 Nat. Commun. 1 124
[11] Mei Z L, Bai J, Niu T M and Cui T J 2012 IEEE Trans. Anten. Propag. 60 398
[12] Chen X, Ma H F, Zou X Y, Jiang X W and Cui J T 2011 J. Appl. Phys. 110 044904
[13] Xu H X, Wang G M, Tao Z and Cui T J 2015 Sci. Rep. 4 5744
[14] Meng F Y, Liu R Z, Zhang K, Erni D, Wu Q, Sun L and Li L W 2013 Prog. Electromag. Res. 141 17
[15] Qi M Q, Tang W X, Ma H F, Pan B C, Tao Z, Sun Y Z and Cui T J 2015 Sci. Rep. 5 9113
[16] Ma H F, Chen X, Xu H S, Yang X M, Jiang W X and Cui T J 2009 Appl. Phys. Lett. 95 094107
[17] Tao Z, Jiang W X, Ma H F, Cui T J 2018 IEEE Trans. Anten. Propag. 66 16
[18] Shin J, Shen J T and Fan S 2009 Phys. Rev. Lett. 102 093903
[19] Choi M, Lee S H, Kim Y, Kang S B, Shin J, Kwak M H, Kang K Y, Lee Y H, Park N and Min B A 2011 Nature 470 369
[20] Liu Z X, Zhang C, Sun S, Yi N B, Gao Y S, Song Q H and Xiao S M 2015 Opt. Mater. Exp. 5 1949
[21] Singh L, Singh R and Zhang W L 2017 J. Appl. Phys. 121 233103
[22] Chen X D, Grzegorczyk T M, Wu B I, Pacheco J and Kong J A 2004 Phys. Rev. E 70 016608
[1] How graph features decipher the soot assisted pigmental energy transport in leaves? A laser-assisted thermal lens study in nanobiophotonics
S Sankararaman. Chin. Phys. B, 2022, 31(8): 088201.
[2] High power supercontinuum generation by dual-color femtosecond laser pulses in fused silica
Saba Zafar, Dong-Wei Li(李东伟), Acner Camino, Jun-Wei Chang(常峻巍), and Zuo-Qiang Hao(郝作强). Chin. Phys. B, 2022, 31(8): 084209.
[3] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[4] Large aperture phase-coded diffractive lens for achromatic and 16° field-of-view imaging with high efficiency
Gu Ma(马顾), Peng-Lei Zheng(郑鹏磊), Zheng-Wen Hu(胡正文), Suo-Dong Ma(马锁冬), Feng Xu(许峰), Dong-Lin Pu(浦东林), and Qin-Hua Wang(王钦华). Chin. Phys. B, 2022, 31(7): 074210.
[5] Temperature-responded tunable metalenses based on phase transition materials
Jing-Jun Wu(伍景军), Feng Tang(唐烽), Jun Ma(马骏), Bing Han(韩冰), Cong Wei(魏聪), Qing-Zhi Li(李青芝), Jun Chen(陈骏), Ning Zhang(张宁), Xin Ye(叶鑫), Wan-Guo Zheng(郑万国), and Ri-Hong Zhu(朱日宏). Chin. Phys. B, 2022, 31(5): 054216.
[6] X-ray focusing using an x-ray lens composed of multi-square polycapillary slices
Kai Pan(潘凯), Tian-Cheng Yi(易天成), Zhao Wang(王瞾), Mo Zhou(周末), Yu-De Li(李玉德), Zhi-Guo Liu(刘志国), Xiao-Yan Lin(林晓燕), and Tian-Xi Sun(孙天希). Chin. Phys. B, 2022, 31(2): 020701.
[7] Detailed characterization of polycapillary focusing x-ray lenses by a charge-coupled device detector and a pinhole
Xue-Peng Sun(孙学鹏), Shang-Kun Shao(邵尚坤), Hui-Quan Li(李惠泉), Tian-Yu Yuan(袁天语), and Tian-Xi Sun(孙天希). Chin. Phys. B, 2022, 31(12): 120702.
[8] Near-field multiple super-resolution imaging from Mikaelian lens to generalized Maxwell's fish-eye lens
Yangyang Zhou(周杨阳) and Huanyang Chen(陈焕阳). Chin. Phys. B, 2022, 31(10): 104205.
[9] Laser-induced thermal lens study of the role of morphology and hydroxyl group in the evolution of thermal diffusivity of copper oxide
Riya Sebastian, M S Swapna, Vimal Raj, and S Sankararaman. Chin. Phys. B, 2021, 30(6): 067801.
[10] Design and optimization of nano-antenna for thermal ablation of liver cancer cells
Mohammad Javad Rabienejhad, Azardokht Mazaheri, and Mahdi Davoudi-Darareh. Chin. Phys. B, 2021, 30(4): 048401.
[11] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[12] Analysis of natural frequency for imaging interface in liquid lens
Na Xie(谢娜). Chin. Phys. B, 2021, 30(10): 104702.
[13] Measurement and verification of concentration-dependent diffusion coefficient: Ray tracing imagery of diffusion process
Li Wei(魏利), Wei-Dong Meng(孟伟东), Li-Cun Sun(孙丽存), Xin-Fei Cao(曹新飞), Xiao-Yun Pu(普小云). Chin. Phys. B, 2020, 29(8): 084206.
[14] High efficient Al: ZnO based bifocus metalens in visible spectrum
Pengdi Wang(王鹏迪) and Xianghua Zeng(曾祥华)†. Chin. Phys. B, 2020, 29(10): 104211.
[15] Diode-pumped Kerr-lens mode-locked Ti: sapphire laser with broad wavelength tunability
Han Liu(刘寒), Geyang Wang(王阁阳), Ke Yang(杨科), Renzhu Kang(康仁铸), Wenlong Tian(田文龙), Dacheng Zhang(张大成), Jiangfeng Zhu(朱江峰), Hainian Han(韩海年), Zhiyi Wei(魏志义). Chin. Phys. B, 2019, 28(9): 094213.
No Suggested Reading articles found!