Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 084203    DOI: 10.1088/1674-1056/27/8/084203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Three-mode optomechanical system for angular velocity detection

Kai Li(李凯), Sankar Davuluri, Yong Li(李勇)
Beijing Computational Science Research Center, Beijing, China
Abstract  

We propose a scheme for measuring the angular velocity of absolute rotation using a three-mode optomechanical system in which one mode of the two-dimensional (2D) mechanical resonator is coupled to an optical cavity. When the total system rotates, the Coriolis force acting on the 2D mechanical resonator due to the absolute rotation will affect the mechanical motion and thus change the phase of the output field from the cavity. The angular velocity of the absolute rotation can be estimated by monitoring the spectrum of the output field from the cavity via homodyne measurement. The minimum measurable angular velocity, which is determined by the noise spectrum, is calculated. The working range of the gyroscope for measuring angular velocity is discussed.

Keywords:  optomechanics      gyroscope  
Received:  12 April 2018      Revised:  21 May 2018      Accepted manuscript online: 
PACS:  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  06.30.Gv (Velocity, acceleration, and rotation)  
  42.50.-p (Quantum optics)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301200), the National Basic Research Program of China (Grant No. 2014CB921403), the Science Challenge Project of China (Grant No. TZ2017003), and the National Natural Science Foundation of China (Grant Nos. 11774024, 11534002, and U1530401).

Corresponding Authors:  Yong Li     E-mail:  liyong@csrc.ac.cn

Cite this article: 

Kai Li(李凯), Sankar Davuluri, Yong Li(李勇) Three-mode optomechanical system for angular velocity detection 2018 Chin. Phys. B 27 084203

[1] Chatfield A B 2015 Fundamentals of High Accuracy Inertial Navigation (American Institute of Aeronautics and Astronautic)
[2] Britting K R 1971 Inertial Navigation Systems Analysis (Wiley-Interscience)
[3] Acar C and Shkel A 2009 MEMS Vibratory Gyroscopes (Spriger)
[4] Zaman M F, Sharma A, Hao Z and Ayazi F 2008 Journal of Microelectromechanical System 17 1526
[5] Ezekiel S and Arditty H J 1981 Fiber-Optic Rotation Sensors and Related Technologies (Springer)
[6] Karwacki F A 1980 Navigation 27 72
[7] Meyer D and Larsen M 2014 Gyroscopy & Navigation 5 75
[8] Gustavson T L, Bouyer P and Kasevich M A 1997 Phys. Rev. Lett. 78 2046
[9] Müller T, Gilowski M, Zaiser M, Berg P, Schubert Ch, Wendrich T, Ertmer W and Rasel E M 2009 Eur. Phys. J. D 53 273
[10] The LIGO Scientific Collaboration 2013 Nat. Photon. 7 613
[11] Rugar D, Budakian R, Mamin H J and Chui B W 2004 Nature 430 329
[12] Zhang J Q, Li Y, Feng M and Xu Y 2012 Phys. Rev. A 86 053806
[13] Xiong H, Si L G and Wu Y 2017 Appl. Phys. Lett. 110 171102
[14] Hoff U B, Harris G I, Madsen L S, Kerdoncuff H, Lassen M, Nielsen B M, Bowen W P and Andersen U L 2013 Opt. Lett. 38 1413
[15] Anetsberger G, Arcizet O, Gavartin E, Unterreithmeier Q P, Weig E M, Kotthaus J P and Kippenberg T J 2009 Nat. Phys. 5 909
[16] Yin Z Q, Li T C and Feng M 2011 Phys. Rev. A 83 013816
[17] Zhou L M, Xiao K W, Yin Z Q, Chen J and Zhao N 2017 arXiv: 1709.07177
[18] Lin Q, He B and Xiao M 2017 Phys. Rev. A 96 043812 )
[19] Li J J and Zhu K D 2012 Appl. Phys. Lett. 101 141905
[20] Zhao N and Yin Z Q 2014 Phys. Rev. A 90 042118
[21] Liao J Q and Law C K 2011 Phys. Rev. A 83 033820
[22] Wang Q, Zhang J Q, Ma P C, Yao C M and Feng M 2015 Phys. Rev. A 91 063827
[23] Xiong H, Si L G, Zheng A S, Yang X X and Wu Y 2012 Phys. Rev. A 86 013815
[24] Wilson-Rae I, Nooshi N, Zwerger W and Kippenberg T J 2007 Phys. Rev. Lett. 99 093901
[25] Guo Y J, Li K, Nie W J and Li Y 2014 Phys. Rev. A 90 053841
[26] Fu H, Ding J F, Li Y and Cao G Y 2015 Sci. China-Phys. Mech. Astron. 58 050304
[27] Zhang J, Mu Q X and Zhang W Z 2018 Chin. Phys. B 27 040304
[28] Liu Y C, Xiao Y F, Luan X S and Wong C W 2015 Sci. China-Phys. Mech. Astron. 58 050305
[29] Norgia M and Donati S Hybrid 2001 Electron. Lett. 37 756
[30] Davuluri S 2016 Phys. Rev. A 94 013808
[31] Davuluri S and Li Y 2016 New J. Phys. 18 103047
[32] Davuluri S, Li K and Li Y 2017 New J. Phys. 19 113004
[33] Gardiner C W and Zoller P 2000 Quantum Noise (Springer)
[34] Gazeau J P, Koide T and Murenzi R 2017 Europhys. Lett. 118 50004
[35] Arnold V I, Kozlov V V and Neishtadt A I 2006 Mathematical Aspects of Classical and Celestial Mechanics (Springer)
[36] Breuer H P and Petruccione F 2006 The theory of open quantum systems (Oxford)
[37] Clerk A A, Devoret M H, Girvin S M, Marquardt F and Schoelkopf R J 2010 Rev. Mod. Phys. 82 1155
[38] Walls D F and Milburn G J 2008 Quantum Optics (Springer)
[39] Loudon R and Knight P L 1987 J. Mod. Opt. 34 709
[40] Mow-lowry C M, Mullavey A J, Gossler S, Gray M B and McClelland D E 2008 Phys. Rev. Lett. 100 010801
[41] Arcizet O, Cohadon p -F, Briant T, Pinard M and Heidmann A 2006 Nature 444 71
[1] Tunable phonon-atom interaction in a hybrid optomechanical system
Yao Li(李耀), Chuang Li(李闯), Jiandong Zhang(张建东),Ying Dong(董莹), and Huizhu Hu(胡慧珠). Chin. Phys. B, 2023, 32(4): 044213.
[2] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[3] Nonlocal nonreciprocal optomechanical circulator
Ji-Hui Zheng(郑继会), Rui Peng(彭蕊), Jiong Cheng(程泂), Jing An(安静), and Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2022, 31(5): 054204.
[4] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[5] Ground state cooling of an optomechanical resonator with double quantum interference processes
Shuo Zhang(张硕), Tan Li(李坦), Qian-Hen Duan(段乾恒), Jian-Qi Zhang(张建奇), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2021, 30(2): 023701.
[6] Enhancing stationary entanglement between two optomechanical oscillators by Coulomb interaction with Kerr medium
Tian-Le Yang(杨天乐), Chen-Long Zhu(朱陈龙), Sheng Liu(刘声), and Ye-Jun Xu(许业军). Chin. Phys. B, 2021, 30(12): 124201.
[7] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
[8] Compound-induced transparency in three-cavity coupled structure
Hao-Ye Qin(秦昊烨), Yi-Heng Yin(尹贻恒), and Ming Ding(丁铭). Chin. Phys. B, 2020, 29(12): 124208.
[9] Low drift nuclear spin gyroscope with probe light intensity error suppression
Wenfeng Fan(范文峰), Wei Quan(全伟), Feng Liu(刘峰), Lihong Duan(段利红), Gang Liu(刘刚). Chin. Phys. B, 2019, 28(11): 110701.
[10] Electro-optomechanical switch via tunable bistability and four-wave mixing
Kamran Ullah. Chin. Phys. B, 2019, 28(11): 114209.
[11] Effects of the Casimir force on the properties of a hybrid optomechanical system
Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2019, 28(1): 014202.
[12] Analysis of resonance asymmetry phenomenon in resonator integrated optic gyro
Yao Fei(费瑶), Yu-Ming He(何玉铭), Xiao-Dong Wang(王晓东), Fu-Hua Yang(杨富华), Zhao-Feng Li(李兆峰). Chin. Phys. B, 2018, 27(8): 084213.
[13] Controlling the entanglement of mechanical oscillators in composite optomechanical system
Jun Zhang(张俊), Qing-Xia Mu(穆青霞), Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2018, 27(4): 040304.
[14] Multi-window transparency and fast-slow light switching in a quadratically coupled optomechanical system assisted with three-level atoms
Wan-Ying Wei(魏晚迎), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2018, 27(3): 034204.
[15] Parameter analysis for a nuclear magnetic resonance gyroscope based on bf133Cs-129Xe/131Xe
Da-Wei Zhang(张大伟), Zheng-Yi Xu(徐正一), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2017, 26(2): 023201.
No Suggested Reading articles found!