Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 076502    DOI: 10.1088/1674-1056/27/7/076502
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Thermal conductivity of systems with a gap in the phonon spectrum

E Salamatov
Udmurt Federal Research Center, Ural Branch of the Russian Academy of Sciences, Izhevsk 426067, Russia
Abstract  An original theoretical model for describing the low-temperature thermal conductivity in systems with a region of forbidden values (a gap) in the phonon spectrum is proposed. The model is based on new experimental results on the temperature dependence of the phonon diffusion coefficient in nanoceramics and dielectric glasses which showed a similar anomalous behavior of the diffusion coefficient in these systems that may be described under the assumption of a gap in the phonon spectrum. In this paper, the role of the gap in low-temperature behavior of the thermal conductivity, κ (T), is analyzed. The plateau in the temperature dependence of the thermal conductivity is shown to correlate with the position and the width of the gap. The temperature dependence of thermal conductivity of such systems when changing the scattering parameters related to various mechanisms is studied. It is found that the umklapp process (U-processes) involving low-frequency short-wavelength phonons below the gap forms the behavior of the temperature dependence of thermal conductivity in the plateau region. A comparison of the calculated and experimental results shows considerable possibilities of the model in describing the low-temperature thermal conductivity in glass-like systems.
Keywords:  phononic band gap      phonon diffusion coefficient      thermal conductivity      glassy crystals  
Received:  07 November 2017      Revised:  17 April 2018      Accepted manuscript online: 
PACS:  65.60.+a (Thermal properties of amorphous solids and glasses: heat capacity, thermal expansion, etc.)  
  63.50.-x (Vibrational states in disordered systems)  
  61.43.Fs (Glasses)  
Fund: Project supported by the Ural Branch of the Russian Academy of Sciences, Russia (Grant No. 18-2-2-12), the Russian Foundation for Basic Research, Russia (Grant Nos. 16-07-00529 and 18-07-00191), and the Financing Program, Russia (Grant No. AAAA-A16-116021010082-8).
Corresponding Authors:  E Salamatov     E-mail:  esalama2i@gmail.com

Cite this article: 

E Salamatov Thermal conductivity of systems with a gap in the phonon spectrum 2018 Chin. Phys. B 27 076502

[1] Suga H 2003 J. Phys. -Condens. Mat. 25 s775
[2] Hassaine M, Ramos M A, Krivchikov A I, Sharapova I V, Korolyuk O A and Jimenez-Rioboo R J 2013 Phys. Rev. B 85 104206
[3] Krivchikov A I, Yushchenko A N, Korolyuk O A, Bermejo F J, Fernandez-Perea R, Bustinduy I and Gonzalez M A 2008 Phys. Rev. B 77 024202
[4] Ross G, Andersson P and Backstrom G 1981 Nature 290 322
[5] Krivchikov A I, Gorodilov B Y, Korolyuk O A, Manzhelii V G, Romantsova O O, Conrad H, PressW, Tse J S and Klug D D 2006 Phys. Rev. B 73 064203
[6] Ivanov S V, Smirnova E P, Taranov A V and Khazanov E N 1999 J. Exp. Theor. Phys. 88 342
[7] Salamatov E A, Taranov A V and Khazanov E N 2015 J. Exp. Theor. Phys. 121 267
[8] Nikonkov R V, Stachowiak P, Jeżowski A and Krivchikov A I 2016 Low Temp. Phys. 42 313
[9] Nikonkov R V, Stachowiak P, Jeżowski A and Krivchikov A I 2017 Int. J. Heat Mass Tran. 112 913
[10] Zhang L, Li N, Wang H Q, Zhang Y, Ren F, Liao X X, Li Y P, Wang X D, Huang Z, Dai Y, Yan H and Zheng J C 2017 Chin. Phys. B 26 016602
[11] Song J Q, Shi X, Zhang W Q and Chen L D 2013 Physics 42 112 (in Chinese)
[12] Aly A H and Mehaney A 2017 Chin. Phys. B 25 114301
[13] Zeller R C and Pohl R O 1975 Phys. Rev. B 4 2027
[14] Freeman J J and Anderson A A 1986 Phys. Rev. B 34 5684
[15] Anderson P W, Halperin B I and Varma C M 1972 Philos. Mag. 25 1
[16] Philips W A 1972 J. Low Temp. Phys. 7 351
[17] Tielburger D, Merz R, Ehrenfels R and Hunklinger S 1982 Phys. Rev. B 45 2750
[18] Elliot S R 1992 Europhys. Lett. 19 201
[19] Buchenau U, Galperin Y M, Gurevich V L, Parshin D A, Ramos M A and Schober H R 1992 Phys. Rev. B 46 2798
[20] Ivanov S, Kozorezov A, Taranov A and Khazanov E 1992 J. Exp. Theor. Phys. 75 319
[21] Kozub V I, Rudin A M and Shober H 1994 Phys. Rev. B 50 6023
[22] Kozub V I and Rudin A M 1995 Phys. Rev. B 53 5356
[23] Smontara A, Lasjaunias J C, Monceau P and Levy F 1992 Phys. Rev. B 46 12072
[24] Smontara A, Lasjaunias J C and Apostol M 1994 J. Low Temp. Phys. 94 289
[25] Smontara A, Lasjaunias J C and Maynard R 1996 Phys. Rev. Lett. 77 5397
[26] Smontara A, Lasjaunias J C, Maynard R, Berger H and Levi F 1996 J. Low Temp. Phys. 111 815
[27] Cross M C and Lifshitz R 2001 Phys. Rev. B 64 085324
[28] Salamatov E I 1996 J. Non-Cryst. Solids 202 128
[29] Berman R 1976 Thermal Conduction in Solids (Oxford:Clarendon Press) p. 273
[30] Zinkey A, Buchenau U, Fenzl H and Schober H R 1977 Solid State Commun. 22 693
[31] Zhernov A P, Salamatov E I and Chulkin E P 1991 Phys. Status Solidi 165 355
[32] Zhernov A P, Salamatov E I and Chulkin E P 1991 Phys. Status Solidi 168 81
[33] Fujishitai H, Shapiro S M, Satof M and Hoshino S 1994 J. Phys. C-Solid State Phys. 19 3049
[34] Ivanov V V, Salamatov E I, Taranov A V and Khazanov E N 2008 J. Exp. Theor. Phys. 106 288
[35] Natsik V D, Vatazhuk E N, Pal-Val P P, Pal-Val L N and Moskalenko V A 2013 Low Temp. Phys. 39 1078
[36] Krivchikov A I, Bermejo F J, Sharapova I V, Korolyuk O A and Romantsova O O 2011 Low Temp. Phys. 37 517
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[5] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[6] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[7] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[8] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[9] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[10] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[11] Accurate determination of anisotropic thermal conductivity for ultrathin composite film
Qiu-Hao Zhu(朱秋毫), Jing-Song Peng(彭景凇), Xiao Guo(郭潇), Ru-Xuan Zhang(张如轩), Lei Jiang(江雷), Qun-Feng Cheng(程群峰), and Wen-Jie Liang(梁文杰). Chin. Phys. B, 2022, 31(10): 108102.
[12] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
[13] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[14] Effect of deformation of diamond anvil and sample in diamond anvil cell on the thermal conductivity measurement
Caihong Jia(贾彩红), Dawei Jiang(蒋大伟), Min Cao(曹敏), Tingting Ji(冀婷婷), and Chunxiao Gao(高春晓). Chin. Phys. B, 2021, 30(12): 124702.
[15] Excellent thermoelectric performance predicted in Sb2Te with natural superlattice structure
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chaoyu He(何朝宇), Jin Li(李金), Chunxiao Zhang(张春小), and Jianxin Zhong(钟建新). Chin. Phys. B, 2021, 30(12): 128401.
No Suggested Reading articles found!