Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 063202    DOI: 10.1088/1674-1056/27/6/063202
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Demonstration of superadiabatic population transfer in superconducting qubit

Mengmeng Li(李蒙蒙), Xinsheng Tan(谭新生), Kunzhe Dai(戴坤哲), Peng Zhao(赵鹏), Haifeng Yu(于海峰), Yang Yu(于扬)
National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
Abstract  We implemented the superadiabatic population transfer within the nonadiabatic regime in a two-level superconducting qubit system. To realize the superadiabatic procedure, we added an additional term in the Hamiltonian, introducing an auxiliary counter-diabatic field to cancel the nonadiabatic contribution in the evolution. Based on the superadiabatic procedure, we further demonstrated quantum Phase and NOT gates. These operations, which possess both of the fast and robust features, are promising for quantum information processing.
Keywords:  superadiabatic      superconducting qubit      counter-diabatic      fast evolution  
Received:  01 March 2018      Revised:  22 March 2018      Accepted manuscript online: 
PACS:  32.80.Xx (Level crossing and optical pumping)  
  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: Project supported by the National Key Basic Research and Development Program of China (Grant No.2016YFA0301802) and the National Natural Science Foundation of China (Grant Nos.11274156,11504165,11474152,and 61521001).
Corresponding Authors:  Xinsheng Tan, Haifeng Yu     E-mail:  txs.nju@gmail.com;hfyu@nju.edu.cn

Cite this article: 

Mengmeng Li(李蒙蒙), Xinsheng Tan(谭新生), Kunzhe Dai(戴坤哲), Peng Zhao(赵鹏), Haifeng Yu(于海峰), Yang Yu(于扬) Demonstration of superadiabatic population transfer in superconducting qubit 2018 Chin. Phys. B 27 063202

[1] Beterov I I, Saffman M, Yakshina E A, Zhukov V P, Tretyakov D B, Entin V M, Ryabtsev I I, Mansell C W, MacCormick C, Bergamini S and Fedoruk M P 2013 Phys. Rev. A 88 010303
[2] Saffman M, Walker T G and Mølmer K 2010 Rev. Mod. Phys 82 2313
[3] Leek P J, Fink J M, Blais A, Bianchetti R, Göppl M, Gambetta J M, Schuster D I, Frunzio L, Schoelkopf R J and Wallraff A 2007 Science 318 5858
[4] Yang Z B, Wu H Z, Zheng S B 2010 Chin. Phys. B 19 094205
[5] Lin Y J, Compton R L, Jiménez-García K, Porto J V and Spielman I B 2009 Nature 462 628
[6] Lin Y J, Jiménez-García K and Spielman I B 2011 Nature 471 83
[7] Dalibard J, Gerbier F, Juzeliūnas G and Öhberg P 2011 Rev. Mod. Phys 83 1523
[8] Kasevich M 2002 Science 298 1363
[9] Kovachy T, Chiow S W and Kasevich M A 2012 Phys. Rev. A 86 011606
[10] Vitanov N V, Halfmann T, Shore B W and Bergmann K 2001 Ann. Rev. Phys. Chem. 52 763
[11] Xu H K, Song C, Liu W Y, Xue G M, Su F F, Deng H, Tian Y, Zheng D N, Han S Y, Zhong Y P, Wang H, Liu Y X and Zhao S P 2016 Nat. Commun. 7 11018
[12] Zhang X Z, Han H L, Han H P, Fan X W 2005 Chin. Phys 14 720
[13] Du Y X, Liang Z T, Huang W, Yan H and Zhu S L 2014 Phys. Rev. A 90 023821
[14] Lim R and Berry M V 1991 J. Phys. A:Math. Gen. 24 3255
[15] Berry M V 2009 J. Phys. A:Math. Theor. 42 365303
[16] Demirplak M and Rice S A 2003 J. Phys. Chem. A 107 9937
[17] Demirplak M and Rice S A 2005 J. Phys. Chem. B 109 6838
[18] Demirplak M and Rice S A 2008 J. Chem. Phys. 129 154111
[19] Torrontegui E, Ibáñez S, Martínez-Garaot S, Modugno M, del Campo A, Guéry-Odelin D, Ruschhaupt A, Chen X, Muga J G 2013 Adv. At. Mol. Opt. Phys. 62 117
[20] Chen X, Lizuain I, Ruschhaupt A, Gueŕy-Odelin D and Muga J G 2010 Phys. Rev. Lett. 105 123003
[21] Dou F Q, Liu J and Fu L B 2016 Europhys. Lett. 116 60014
[22] Giannelli L and Arimondo E 2014 Phys. Rev. A 89 033419
[23] del Campo A 2013 Phys. Rev. Lett. 111 100502
[24] Du Y X, Liang Z T, Li Y C, Yue X X, Lv Q X, Huang W, Chen X, Yan H and Zhu S L 2016 Nat. Commun. 7 12479
[25] Zhang J F, Shim J H, Niemeyer I, Taniguchi T, Teraji T, Abe H, Onoda S, Yamamoto T, Ohshima T, Isoya J and Suter D 2013 Phys. Rev. Lett. 110 240501
[26] Bason M G, Viteau M, Malossi N, Huillery P, Arimondo E, Ciampini D, Fazio R, Giovannetti V, Mannella R and Morsch O 2012 Nat. Phys. 8 147
[27] Gong M, Zhou Y, Lan D, Fan Y Y, Pan J Z, Yu H F, Chen J, Sun G Z, Yu Y, Han S Y and Wu P H 2016 Appl. Phys. Lett. 108 112602
[28] Zhang Z X, Wang T H, Xiang L, Yao J D, Wu J L and Yin Y 2017 Phys. Rev. A 95 042345
[29] Liang Z T, Yue X X, Lv Q X, Du Y X, Huang W, Yan H and Zhu S L 2016 Phys. Rev. A 93 040305
[30] Liu Y X, Wei L F and Nori F 2004 Europhys. Lett. 67 874
[31] Liu Y X, Wei L F and Nori F 2005 Phys. Rev. B 72 014547
[32] Hollenberg Lloyd C L 2012 Nat. Phys. 8 113
[1] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[2] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[3] Measuring Loschmidt echo via Floquet engineering in superconducting circuits
Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平). Chin. Phys. B, 2022, 31(3): 030307.
[4] Quantum computation and simulation with superconducting qubits
Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(8): 080304.
[5] Shortcut-based quantum gates on superconducting qubits in circuit QED
Zheng-Yin Zhao(赵正印), Run-Ying Yan(闫润瑛), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(8): 088501.
[6] Universal quantum control based on parametric modulation in superconducting circuits
Dan-Yu Li(李丹宇), Ji Chu(储继), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Shao-Xiong Li(李邵雄), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(7): 070308.
[7] Fabrication of microresonators by using photoresist developer as etchant
Shu-Qing Song(宋树清), Jian-Wen Xu(徐建文), Zhi-Kun Han(韩志坤), Xiao-Pei Yang(杨晓沛), Yu-Ting Sun(孙宇霆), Xiao-Han Wang(王晓晗), Shao-Xiong Li(李邵雄), Dong Lan(兰栋), Jie Zhao(赵杰), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(6): 060313.
[8] Fast generation of W state via superadiabatic-based shortcut in circuit quantum electrodynamics
Xue-Mei Wang(王雪梅), An-Qi Zhang(张安琪), Peng Xu(许鹏, and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2021, 30(3): 030307.
[9] Phase-sensitive Landau-Zener-Stückelberg interference in superconducting quantum circuit
Zhi-Xuan Yang(杨智璇), Yi-Meng Zhang(张一萌), Yu-Xuan Zhou(周宇轩), Li-Bo Zhang(张礼博), Fei Yan(燕飞), Song Liu(刘松), Yuan Xu(徐源), and Jian Li(李剑). Chin. Phys. B, 2021, 30(2): 024212.
[10] Hardware for multi-superconducting qubit control and readout
Zhan Wang(王战), Hai Yu(于海), Rongli Liu(刘荣利), Xiao Ma(马骁), Xueyi Guo(郭学仪), Zhongcheng Xiang(相忠诚), Pengtao Song(宋鹏涛), Luhong Su(苏鹭红), Yirong Jin(金贻荣), and Dongning Zheng(郑东宁). Chin. Phys. B, 2021, 30(11): 110305.
[11] Manipulation of superconducting qubit with direct digital synthesis
Zhi-Yuan Li(李志远), Hai-Feng Yu(于海峰), Xin-Sheng Tan(谭新生), Shi-Ping Zhao(赵士平), Yang Yu(于扬). Chin. Phys. B, 2019, 28(9): 098505.
[12] Simulation of the influence of imperfections on dynamical decoupling of a superconducting qubit
Ying-Shan Zhang(张颖珊), Jian-She Liu(刘建设), Chang-Hao Zhao(赵昌昊), Yong-Cheng He(何永成), Da Xu(徐达), Wei Chen(陈炜). Chin. Phys. B, 2019, 28(6): 060201.
[13] Nb-based Josephson parametric amplifier for superconducting qubit measurement
Fei-Fan Su(宿非凡), Zi-Ting Wang(王子婷), Hui-Kai Xu(徐晖凯), Shou-Kuan Zhao(赵寿宽), Hai-Sheng Yan(严海生), Zhao-Hua Yang(杨钊华), Ye Tian(田野), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2019, 28(11): 110303.
[14] Cavity-induced ATS effect on a superconducting Xmon qubit
Xueyi Guo(郭学仪), Hui Deng(邓辉), Jianghao Ding(丁江浩), Hekang Li(李贺康), Pengtao Song(宋鹏涛), Zhan Wang(王战), Luhong Su(苏鹭红), Yanjun Liu(刘彦军), Zhongcheng Xiang(相忠诚), Jie Li(李洁), Yirong Jin(金贻荣), Yuxi Liu(刘玉玺), Dongning Zheng(郑东宁). Chin. Phys. B, 2018, 27(8): 084202.
[15] Solid-state quantum computation station
Fanming Qu(屈凡明), Zhongqing Ji(姬忠庆), Ye Tian(田野), Shiping Zhao(赵士平). Chin. Phys. B, 2018, 27(7): 070301.
No Suggested Reading articles found!