Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 054215    DOI: 10.1088/1674-1056/27/5/054215
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Light-scattering model for aerosol particles with irregular shapes and inhomogeneous compositions using a parallelized pseudo-spectral time-domain technique

Shuai Hu(胡帅)1,2, Taichang Gao(高太长)1,2, Hao Li(李浩)1, Lei Liu(刘磊)1, Ming Chen(陈鸣)1, Bo Yang(杨波)1,2
1 College of Meteorology and Oceanography, National University of Defense Technology, Nanjing 211101 China;
2 National Key Laboratory on Electromagnetic Environment and Electro-optical Engineering, PLA University of Science and Technology, Nanjing 210007, China
Abstract  To improve the modeling accuracy of radiative transfer, the scattering properties of aerosol particles with irregular shapes and inhomogeneous compositions should be simulated accurately. To this end, a light-scattering model for nonspherical particles is established based on the pseudo-spectral time domain (PSTD) technique. In this model, the perfectly matched layer with auxiliary differential equation (ADE-PML), an excellent absorption boundary condition (ABC) in the finite difference time domain generalized for the PSTD, and the weighted total field/scattered field (TF/SF) technique is employed to introduce the incident light into 3D computational domain. To improve computational efficiency, the model is further parallelized using the OpenMP technique. The modeling accuracy of the PSTD scheme is validated against Lorenz-Mie, Aden-Kerker, T-matrix theory and DDA for spheres, inhomogeneous particles and nonspherical particles, and the influence of the spatial resolution and thickness of ADE-PML on the modeling accuracy is discussed as well. Finally, the parallel computational efficiency of the model is also analyzed. The results show that an excellent agreement is achieved between the results of PSTD and well-tested scattering models, where the simulation errors of extinction efficiencies are generally smaller than 1%, indicating the high accuracy of our model. Despite its low spatial resolution, reliable modeling precision can still be achieved by using the PSTD technique, especially for large particles. To suppress the electromagnetic wave reflected by the absorption layers, a six-layer ADE-PML should be set in the computational domain at least.
Keywords:  nonspherical aerosol      light scattering      pseudo-spectral time domain      atmospheric radiative transfer  
Received:  17 August 2017      Revised:  28 November 2017      Accepted manuscript online: 
PACS:  42.68.Mj (Scattering, polarization)  
  42.68.Ay (Propagation, transmission, attenuation, and radiative transfer)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  95.30.Jx (Radiative transfer; scattering)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.41575025 and 41575024).
Corresponding Authors:  Taichang Gao     E-mail:  2009gaotc@gmail.com

Cite this article: 

Shuai Hu(胡帅), Taichang Gao(高太长), Hao Li(李浩), Lei Liu(刘磊), Ming Chen(陈鸣), Bo Yang(杨波) Light-scattering model for aerosol particles with irregular shapes and inhomogeneous compositions using a parallelized pseudo-spectral time-domain technique 2018 Chin. Phys. B 27 054215

[13] Herman M, Deuzé J L, Marchand A, Roger B and Lallart P 2005 J. Geophys. Res. 110 D10S02
[1] Liou K N 2003 An Introduction to Atmospheric Radiation (San Diego:Academic Press)
[14] Hu S, Gao T, Li H, Yang B, Zhang F, Chen M and Liu L 2017 Opt. Express 25 1643
[2] Zhang F, Shi Y N, Li J, Wu K and Iwabuchi H 2017 J. Atmos. Sci. 74 419
[15] Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York:John Wiley & Sons, Inc.)
[3] Rao R 2012 Modern Optics (Beijing:Scientific Express)
[16] Zhao J Q and Hu Y Q 2003 Appl. Opt. 42 4937
[4] Sun W, Videen G, Fu Q and Hu Y 2013 J. Quant. Spectrosc. Radiat. Trans. 131 166
[17] Zhao J Q, Shi G, Chen H and Cheng G 2006 Adv. Atmos. Sci. 23 802
[5] Mishchenko M I and Travis L D 1997 J. Geophys. Res. 102 16989
[18] Yang P, Liou K N, Bi L, Liu C, Yi B and Baum B A 2015 Adv. Atmos. Sci. 32 32
[6] Dubovik O, Sinyuk A, Lapyonok T, Holben B N, Mishchenko M, Yang P, Eck T F, Volten H, Munoz O, Veihelmann B, Zande W J v d, Leon J F, Sorokin M and Slutsker I 2006 J. Geophys. Res. 111 D11208
[19] Mishchenko M I and Travis L D 1998 J. Quant. Spectrosc. Radiat. Trans. 60 309
[7] Hu S, Gao T, Li H, Liu L, Liu X C, Zhang T, Cheng T J, LiWT, Dai Z H and Su X J 2016 J. Geophys. Res.:Atmospheres 121
[20] Mishchenko M I and Travis L D 1994 Opt. Comm. 109 16
[8] Mishchenko M I, Hovenier J W and Travis L D 2000 Light Scattering by Nonspherical Particles, Thoery, Measurements, and Application (New York:Academic Press)
[21] Voshchinnikov N V and Farafonov V G 1993 Astrophysics & Space Science 204 19
[9] Cheng T H, Gu X F, Yu T L and Tian G 2010 J. Quant. Spectrosc. Radiat. Trans. 111 895
[22] Al-Rizzo H M and Tranquilla J M 1995 J. Comput. Phys. 119 356
[10] Curtis D B, Meland B and Aycibin M 2008 J. Geophys. Res. 113 D08210
[23] Liu L, Mishchenko M I and Cairns B 2006 J. Quant. Spectrosc. Radiat. Trans. 101 488
[11] Han Y, Rao R Z, Wang Y J and Lü D 2012 Infrared and Laser Engineering 41 3050(in Chinese)
[24] Quirantes A 2005 J. Quant. Spectrosc. Radiat. Trans. 92 373
[12] Han Y, Rao R, Wang Y and Lu D 2012 Infrared and Laser Engineering 41 3051
[25] Bi L, Yang P, Kattawar G W and Mishchenko M I 2013 J. Quant. Spectrosc. Radiat. Trans. 123 17
[13] Herman M, Deuzé J L, Marchand A, Roger B and Lallart P 2005 J. Geophys. Res. 110 D10S02
[26] Harrington R F 1968 Field Computation by Moment Methods (New York:Macmillan)
[14] Hu S, Gao T, Li H, Yang B, Zhang F, Chen M and Liu L 2017 Opt. Express 25 1643
[27] Draine B T 1988 Astrophysical Journal 333 848
[15] Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York:John Wiley & Sons, Inc.)
[16] Zhao J Q and Hu Y Q 2003 Appl. Opt. 42 4937
[28] Draine B T and Flatau P J 1994 J. Opt. Soc. Am. A 11 1491
[17] Zhao J Q, Shi G, Chen H and Cheng G 2006 Adv. Atmos. Sci. 23 802
[29] Yurkin M A and Hoekstra A G 2007 J. Quant. Spectrosc. Radiat. Trans. 106 558
[30] Draine B T and Flatau P J 1994 J. Opt. Soc. Am. A 11 1491
[18] Yang P, Liou K N, Bi L, Liu C, Yi B and Baum B A 2015 Adv. Atmos. Sci. 32 32
[31] Yang P and Liou K N 1995 J. Opt. Soc. Am. A 12 162
[19] Mishchenko M I and Travis L D 1998 J. Quant. Spectrosc. Radiat. Trans. 60 309
[32] Hu S, Gao T, Li H, Chen M, Zhang F and Yang B 2017 Opt. Express 25 17872
[20] Mishchenko M I and Travis L D 1994 Opt. Comm. 109 16
[33] Liu C, Panetta R L and Yang P 2012 J. Quant. Spectrosc. Radiat. Trans. 113 1728
[21] Voshchinnikov N V and Farafonov V G 1993 Astrophysics & Space Science 204 19
[22] Al-Rizzo H M and Tranquilla J M 1995 J. Comput. Phys. 119 356
[34] Liu Q H 1997 Micro Opt. Tech. Lett. 15 158
[23] Liu L, Mishchenko M I and Cairns B 2006 J. Quant. Spectrosc. Radiat. Trans. 101 488
[35] Hu S, Gao T, Li H, Yang B, Jiang Z, Liu L and Chen M 2017 J. Quant. Spectrosc. Radiat. Trans. 200 1
[36] Gao X, Mirotznik M S and Prather D 2004 IEEE Trans. Antennas. Propag. 52 1665
[24] Quirantes A 2005 J. Quant. Spectrosc. Radiat. Trans. 92 373
[25] Bi L, Yang P, Kattawar G W and Mishchenko M I 2013 J. Quant. Spectrosc. Radiat. Trans. 123 17
[37] Liu Y, Chen Y and Zhang P 2013 Progress in Electromagnetics Research 143 223
[26] Harrington R F 1968 Field Computation by Moment Methods (New York:Macmillan)
[38] Liu C, Bi L, Panetta R L, Yang P and Yurkin M A 2012 Opt. Express 20 16763
[27] Draine B T 1988 Astrophysical Journal 333 848
[28] Draine B T and Flatau P J 1994 J. Opt. Soc. Am. A 11 1491
[29] Yurkin M A and Hoekstra A G 2007 J. Quant. Spectrosc. Radiat. Trans. 106 558
[30] Draine B T and Flatau P J 1994 J. Opt. Soc. Am. A 11 1491
[31] Yang P and Liou K N 1995 J. Opt. Soc. Am. A 12 162
[32] Hu S, Gao T, Li H, Chen M, Zhang F and Yang B 2017 Opt. Express 25 17872
[33] Liu C, Panetta R L and Yang P 2012 J. Quant. Spectrosc. Radiat. Trans. 113 1728
[34] Liu Q H 1997 Micro Opt. Tech. Lett. 15 158
[35] Hu S, Gao T, Li H, Yang B, Jiang Z, Liu L and Chen M 2017 J. Quant. Spectrosc. Radiat. Trans. 200 1
[36] Gao X, Mirotznik M S and Prather D 2004 IEEE Trans. Antennas. Propag. 52 1665
[37] Liu Y, Chen Y and Zhang P 2013 Progress in Electromagnetics Research 143 223
[38] Liu C, Bi L, Panetta R L, Yang P and Yurkin M A 2012 Opt. Express 20 16763
[1] Reconstruction and interpretation of photon Doppler velocimetry spectrum for ejecta particles from shock-loaded sample in vacuum
Xiao-Feng Shi(石晓峰), Dong-Jun Ma(马东军), Song-lin Dang(党松琳), Zong-Qiang Ma(马宗强), Hai-Quan Sun(孙海权), An-Min He(何安民), and Pei Wang(王裴). Chin. Phys. B, 2021, 30(6): 066201.
[2] Difference scattering field properties between periodic defect particles and three-dimensional slightly rough optical surface
Cheng-Xian Ge(葛城显), Zhen-Sen Wu(吴振森), Jing Bai(白靖), Lei Gong(巩蕾). Chin. Phys. B, 2017, 26(6): 064201.
[3] Theoretical studies on particle shape classification based on simultaneous small forward angle light scattering and aerodynamic sizing
Jin-Bi Zhang(张金碧), Lei Ding(丁蕾), Ying-Ping Wang(王颖萍), Li Zhang(张莉), Jin-Lei Wu(吴金雷), Hai-Yang Zheng(郑海洋), Li Fang(方黎). Chin. Phys. B, 2016, 25(3): 034201.
[4] A new kind of superimposing morphology for enhancing the light scattering in thin film silicon solar cells:Combining random and periodic structure
Huang Zhen-Hua (黄振华), Zhang Jian-Jun (张建军), Ni Jian (倪牮), Wang Hao (王昊), Zhao Ying (赵颖). Chin. Phys. B, 2014, 23(8): 084205.
[5] Unidirectional emissions from dielectric photonic circuits decorated with plasmonic phased antenna arrays
Ding Wei (丁伟), Chen Yu-Hui (陈宇辉), Li Zhi-Yuan (李志远). Chin. Phys. B, 2014, 23(3): 037301.
[6] Dynamical Casimir effect in superradiant light scattering by Bose–Einstein condensate in an optomechanical cavity
Sonam Mahajan, Neha Aggarwal, Aranya B Bhattacherjee, ManMohan. Chin. Phys. B, 2014, 23(2): 020315.
[7] Light scattering effect of submicro-textured Ag/Al composite films prepared at lower substrate temperatures
Tang Ping-Lin (唐平林), Wu Yong-Gang (吴永刚), Tong Guang-De (童广德), Xia Zi-Huan (夏子奂), Liu Ren-Chen (刘仁臣), Liang Zhao-Ming (梁钊铭), Zhou Jian (周建). Chin. Phys. B, 2013, 22(7): 078801.
[8] Measurements of NO2 mixing ratios with topographic target light scattering-differential optical absorption spectroscopy system and comparisons to point monitoring technique
Wang Yang (王杨), Li Ang (李昂), Xie Pin-Hua (谢品华), Zeng Yi (曾议), Wang Rui-Bin (王瑞斌), Chen Hao (陈浩), Pei Xian (裴显), Liu Jian-Guo (刘建国), and Liu Wen-Qing (刘文清 ). Chin. Phys. B, 2012, 21(11): 114211.
[9] Investigation on the scattering effect of ceramic Nd:YAG
Li Cheng-Ming(李成明), Zong Nan(宗楠), Gao Hong-Wei(高宏伟), Xu Zu-Yan(许祖彦),Liu Wen-Bin(刘文斌), Pan Yu-Bai(潘裕柏), and Feng Xi-Qi(冯锡淇). Chin. Phys. B, 2010, 19(6): 064202.
[10] Light scattering by a spherical particle with multiple densely packed inclusions
Sun Xian-Ming(孙贤明), Wang Hai-Hua(王海华), Liu Wan-Qiang(刘万强), and Shen Jin(申晋). Chin. Phys. B, 2009, 18(3): 1040-1044.
[11] Light scattering of nanocrystalline TiO2 film used in dye-sensitized solar cells
Xiong Bi-Tao(熊必涛), Zhou Bao-Xue(周保学), Bai Jing(白晶), Zheng Qing(郑青), Liu Yan-Biao(刘艳彪), Cai Wei-Min(蔡伟民), and Cai Jun(蔡俊). Chin. Phys. B, 2008, 17(10): 3713-3719.
No Suggested Reading articles found!