Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 046801    DOI: 10.1088/1674-1056/27/4/046801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

The influence of surface effects on Frederiks transition in nematic liquid crystal doped with ferroelectric nanoparticles

Erfan Kadivar1, Mojtaba Farrokhbin2
1. Department of Physics, Shiraz University of Technology, Shiraz 71555-313, Iran;
2. Department of Physics, Faculty of Sciences, Yazd University, Yazd 89195-741, Iran
Abstract  Motivated by our recent work, in this work, we present the numerical study of the anchoring effect on the Frederiks threshold field in a nematic liquid crystal doped with ferroelectric colloidal nanoparticles. Assuming weak anchoring conditions, we employ the relaxation method and Maxwell construction to numerically solve the Euler-Lagrangian differential equation for the total free energy together the Rapini-Papoular surface energy to take into account anchoring of nematic liquid crystal molecules at the substrates. In this study, we focus our attention on obtaining the phase diagrams of Frederiks transition for different values of anchoring strength which have been not computed in our previous work. In this way, the effect of nanoparticle radius, nanoparticle volume fraction, nanoparticle polarization, and cell thickness on the Frederiks transition for different values of anchoring conditions are summarized in the phase diagrams. The numerical results show that by increasing the nanoparticles size and nanoparticle volume fraction in the ferronematic system, the Frederiks threshold field is strongly reduced.
Keywords:  anchoring surface effect      ferronematics      Frederiks transition      Maxwell construction  
Received:  11 November 2017      Revised:  03 January 2018      Accepted manuscript online: 
PACS:  68.35.Rh (Phase transitions and critical phenomena)  
  77.84.Nh (Liquids, emulsions, and suspensions; liquid crystals)  
  64.70.M- (Transitions in liquid crystals)  
  05.70.Np (Interface and surface thermodynamics)  
Corresponding Authors:  Erfan Kadivar, Mojtaba Farrokhbin     E-mail:  erfan.kadivar@sutech.ac.ir;m.farrokhbin@gmail.com

Cite this article: 

Erfan Kadivar, Mojtaba Farrokhbin The influence of surface effects on Frederiks transition in nematic liquid crystal doped with ferroelectric nanoparticles 2018 Chin. Phys. B 27 046801

[1] Efron U 1995 Spatial Light Modulator Technology:Materials, Devices, and Applications (Dekker)
[2] Bortolozzo U, Clerc M G, Falcon C, Residori S and Rojas R 2006 Phys. Rev. Lett. 96 214501
[3] Residori S, Bortolozzo U, Huignard J P 2008 Phys. Rev. Lett. 100 203603
[4] MÍnguez-Vega G, Supradeepa V R, Mendoza-Yero O and Weiner A M 2010 Opt. Lett. 35 2406
[5] Alberucci A, Piccardi A, Bortolozzo U, Residori S and Assanto G 2010 Opt. Lett. 35 390
[6] Maurer C, Jesacher A, Bernet S and Ritsch-Marte M 2011 Laser Photon. Rev. 5 81
[7] Kaczmarek M and Dyadyusha A 2004 J. Appl. Phys. 96 2616
[8] Cook G, Glushchenko A V, Reshetnyak V Yu, Beckel, E R, Saleh M A and Evans D R 2008 IEEE/LEOS Winter Topical Meeting Series, January 14-16, 2008, Sorrento, Italy, p. 129
[9] Cook G, Glushchenko A V, Reshetnyak V, Griffith A T, Saleh M A and Evans D R 2008 Opt. Express 16 4015
[10] Khoo I C 2007 Liquid crystals, 2nd edn. (New Jersey:John Wiley and Sons)
[11] Beeckman J, Neyts K and Vanbrabant P J M 2011 Opt. Eng. 50 081202
[12] Bahadur B 1990 Liquid Crystals Applications and Uses, Vol. 3(Toronto:World Scientific)
[13] Brochard F and de Gennes P G 1970 J. Phys. 31 691
[14] Burylov S V and Raikher Y L 1994 Phys. Rev. E 50 358
[15] Raikher Yu L, Burylov S V and Zakhlevnykh A N 1987 J. Magn. Magn. Mater. 65 173
[16] Raikher Y L and Stepanov V I 1999 J. Magn. Magn. Mater. 201 182
[17] Burylov S V and Raikher Y L 1995 Mol. Cryst. Liq. Cryst. 258 123
[18] Podoliak N, Buchnev O, DÁlessandro G, Kaczmarek M, Reznikov Y and Sluckin T J 2011 Soft Matter 7 4742
[19] Dierking I, Scalia G and Morales P 2005 J. Appl. Phys. 97 44309
[20] Al-Zangana S, Turner M and Dierking I 2017 J. Appl. Phys. 121 085105
[21] Stark H 2001 Phys. Rep. 351 387
[22] Smalyukh I I, Lavrentovich O D, Kuzmin A N, Kachynski A V and Prasad P N 2005 Phys. Rev. Lett. 95 157801
[23] Yada M, Yamamoto J and Yokoyama H 2004 Phys. Rev. Lett. 92 185501
[24] Poulin P, Stark H, Lubensky T C and Weitz D A 1997 Science 275 1770
[25] Gu Y and Abbott N L 2000 Phys. Rev. Lett. 85 4719
[26] Musevic I, Skarabot M, Tkalec U, Ravnik M and Zumer S 2006 Science 313 954
[27] Hakobyan M R, Alaverdyan R B, Hakobyan R S and Chilingaryan Yu S 2014 Armen. J. Phys. 7 11
[28] Reznikov Y, Buchnev O, Tereshchenko O, Reshetnyak V, Glushchenko A and West J 2003 Appl. Phys. Lett. 82 1917
[29] Ouskova E, Buchnev O, Reshetnyak V, Reznikov Y and Kresse H 2003 Liq. Cryst. 30 1235
[30] Bing G Y, Hai C Y, Ying X, Chun Q S and Zhan-Guo W 2011 Chin. Phys. Lett. 28 096101
[31] Lopatina L M and Selinger J V 2009 Phys. Rev. Lett. 102 197802
[32] Lopatina L M and Selinger J V 2011 Phys. Rev. E. 84 041703
[33] Mukherjee P K 2017 J. Mol. Liq. 225 462
[34] Mukherjee P K 2016 Europhys. Lett. 114 56002
[35] Uchida T and Seki H 1992 In Liquid crystals:Applications and Uses, ed. Bahadur B, Vol. 3(Singapore:World Scientific) p. 63
[36] Ge J J, Li C Y, Xue G, Mann I K, et al. 2001 J. Am. Chem. Soc. 123 5768
[37] Toney M F, Russell T P, Logan J A, Kikuchi H, Sands J M and Kumar S K 1995 Nature 374 709
[38] Yaroshchuk O and Reznikov Y 2012 J. Mater. Chem. 22 286
[39] Rong-Hua G 2012 Acta Phys. Sin. 61 156102
[40] Kadivar E, Bahr C and Stark H 2007 Phys. Rev. E 75 061711
[41] Ying Z M, Merlitza H and Xua W C 2015 Chin. Phys. B 24 026101
[42] Evans S D, Allinson H, Boden N, Flynn T M and Henderson J R 1997 J. Phys. Chem. B 101 2143
[43] Ramdane O O, Auroy P, Forget S, Raspaud E, Martinot-Lagarde P and Dozov I 2000 Phys. Rev. Lett. 84 3871
[44] Ruetschi M, Grutter J, Funfschilling J and Gunterodt H J 1994 Science 265 512
[45] Farrokhbin M and Kadivar E 2016 Physica A 462 725
[46] Rapini A and Papoular M 1969 J. Phys. (Paris) 30 54
[47] Kadivar E 2009 Phys. Rev. E 80 011701
[48] Shelestiuk S M, Reshetnyak V Y and Sluckin T J 2011 Phys. Rev. E 83 041705
[49] Basu R and Iannacchione G S 2009 Appl. Phys. Lett. 95 173113
[50] Blinov L M and Chigrinov V G 1994 Electrooptic Effects in Liquid Crystal Materials (New York:Springer)
[51] Zadorozhnii V I, Sluckin T J, Reshetnyak V Y and Thomas K S 2008 SIAM J. Appl. Math. 68 1688
[52] Napoli G 2006 J. Phys. A:Math. Gen. 39 11
[1] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[2] Influence of particle size on the breaking of aluminum particle shells
Tian-Yi Wang(王天一), Zheng-Qing Zhou(周正青), Jian-Ping Peng(彭剑平),Yu-Kun Gao(高玉坤), and Ying-Hua Zhang(张英华). Chin. Phys. B, 2022, 31(7): 076107.
[3] Structural, magnetic properties, critical behaviors and magnetic entropy changes of La0.7-xGdxCa0.3MnO3 (x = 0,0.05,0.1) manganites
Min Zhou(周敏), Xiang Jin(金香), Wen-Xing Wang(王文星), Lin Zheng(郑琳),Ru Xing(邢茹), Yi Lu(鲁毅), and Jian-Jun Zhao(赵建军). Chin. Phys. B, 0, (): 66102-066102.
[4] High-energy x-ray diffraction study on phase transition asymmetry of plastic crystal neopentylglycol
Zhe Zhang(张哲), Yan-Na Chen(陈艳娜), Ji Qi(齐迹), Zhao Zhang(张召), Koji Ohara, Osami Sakata, Zhi-Dong Zhang(张志东), and Bing Li(李昺). Chin. Phys. B, 2022, 31(3): 036802.
[5] Extended phase diagram of La1-xCaxMnO3 by interfacial engineering
Kexuan Zhang(张可璇), Lili Qu(屈莉莉), Feng Jin(金锋), Guanyin Gao(高关胤), Enda Hua(华恩达), Zixun Zhang(张子璕), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2021, 30(12): 126802.
[6] Phase-field study of spinodal decomposition under effect of grain boundary
Ying-Yuan Deng(邓英远), Can Guo(郭灿), Jin-Cheng Wang(王锦程), Qian Liu(刘倩), Yu-Ping Zhao(赵玉平), and Qing Yang(杨卿). Chin. Phys. B, 2021, 30(8): 088101.
[7] Photoluminescence changes of C70 nanotubes induced by laser irradiation
Han-Da Wang(王汉达), De-Di Liu(刘德弟)†, Yang-Yang He(何洋洋), Hong-Sheng Jia(贾洪声)‡, Ran Liu(刘然), Bo Liu(刘波), Nai-Sen Yu(于乃森), and Zhen-Yi Zhang(张振翼). Chin. Phys. B, 2020, 29(10): 104209.
[8] Cavity formation during water entry of heated spheres
Jia-Chuan Li(李佳川), Ying-Jie Wei(魏英杰), Cong Wang(王聪), Wei-Xue Xia(夏维学). Chin. Phys. B, 2018, 27(9): 094703.
[9] Magnetic phase diagrams of Fe-Mn-Al alloy on the Bethe lattice
Erhan Albayrak. Chin. Phys. B, 2017, 26(2): 020502.
[10] Effect of exchange interaction in ferromagnetic superlattices: A Monte Carlo study
R Masrour, A Jabar. Chin. Phys. B, 2016, 25(10): 107502.
[11] Phase transition and critical behavior ofspin-orbital coupled spinel ZnV2O4
Li Wang(王理), Rong-juan Wang(王蓉娟), Yuan-yuan Zhu(朱媛媛), Zhi-hong Lu(卢志红),Rui Xiong(熊锐), Yong Liu(刘雍), Jing Shi(石兢). Chin. Phys. B, 2016, 25(1): 016802.
[12] Coherent spin dynamics in spin-imbalanced ferromagnetic spinor condensates
Qiu Hai-Bo (邱海波), Wu Li-Wei (武丽伟). Chin. Phys. B, 2015, 24(1): 010304.
[13] An effective-field theory study of hexagonal Ising nanowire:Thermal and magnetic properties
Yusuf Kocakaplan, Ersin Kantar. Chin. Phys. B, 2014, 23(4): 046801.
[14] Effects of the trimodal random field on the magnetic properties of a spin-1 Ising nanotube
H. Magoussi, A. Zaim, M. Kerouad. Chin. Phys. B, 2013, 22(11): 116401.
[15] Mean-field and high temperature series expansion calculations of some magnetic properties of Ising and XY antiferromagnetic thin-films
R. Masrour, M. Hamedoun, A. Benyoussef. Chin. Phys. B, 2012, 21(8): 087503.
No Suggested Reading articles found!