Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 018810    DOI: 10.1088/1674-1056/27/1/018810
Special Issue: SPECIAL TOPIC — New generation solar cells
SPECIAL TOPIC—New generation solar cells Prev   Next  

TiO2 composite electron transport layers for planar perovskite solar cells by mixed spray pyrolysis with precursor solution incorporating TiO2 nanoparticles

Jiaqi Tian(田嘉琪), Hongcui Li(李红翠), Haiyue Wang(王海月), Bo Zheng(郑博), Yebin Xue(薛叶斌), Xizhe Liu(刘喜哲)
Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China
Abstract  Perovskite solar cells with planar structure are attractive for their simplified device structure and reduced hysteresis effect. Compared to conventional mesoporous devices, TiO2 porous scaffold layers are removed in planar devices. Then, compact TiO2 electron transport layers take the functions of extracting electrons, transporting electrons, and blocking holes. Therefore, the properties of these compact TiO2 layers are important for the performance of solar cells. In this work, we develop a mixed spray pyrolysis method for producing compact TiO2 layers by incorporating TiO2 nanoparticles with different size into the precursor solutions. For the optimized nanoparticle size of 60 nm, a power conversion efficiency of 16.7% is achieved, which is obviously higher than that of devices without incorporated nanoparticles (9.9%). Further investigation reveals that the incorporation of nanoparticles can remarkably improve the charge extraction and recombination processes.
Keywords:  perovskite solar cell      electron transport layer      charge extraction      recombination  
Received:  29 September 2017      Revised:  16 November 2017      Accepted manuscript online: 
PACS:  88.40.H- (Solar cells (photovoltaics))  
  88.40.hj (Efficiency and performance of solar cells)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51772125 and 51273079) and the Science Development Program of Jilin Province, China (Grant No. 20150519021JH).
Corresponding Authors:  Xizhe Liu     E-mail:  liu_xizhe@jlu.edu.cn

Cite this article: 

Jiaqi Tian(田嘉琪), Hongcui Li(李红翠), Haiyue Wang(王海月), Bo Zheng(郑博), Yebin Xue(薛叶斌), Xizhe Liu(刘喜哲) TiO2 composite electron transport layers for planar perovskite solar cells by mixed spray pyrolysis with precursor solution incorporating TiO2 nanoparticles 2018 Chin. Phys. B 27 018810

[1] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[2] Im J H, Lee C R, Lee J W, Park S W and Park N 2011 Nanoscale 3 4088
[3] Kim H, Lee C, Im J, Lee K, Moehl T, Marchioro A, Moon S, Humphry-Baker R, Yum J, Moser J, Gr? tzel M and Park N 2012 Sci. Rep. 2 591
[4] Lee M, Teuscher J, Miyasaka T, Murakami T and Snaith H 2012 Science 338 643
[5] Yang W, Noh J, Jeon N, Kim Y, Ryu S, Seo J and Seok S 2015 Science 348 1234
[6] Wu J, Xu X, Zhao Y, Shi J, Xu Y, Luo Y, Li D, Wu H and Meng Q 2017 ACS Applied Materials & Interfaces 32 26937
[7] Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S, Seo J, Kim E K, Noh J H and Seok S I 2017 Science 356 1376
[8] Yang G, Tao H, Qin P, Ke W and Fang G 2016 J. Mater. Chem. A 4 3970
[9] Noh J, Im S, Heo J, Mandal T and Seok S 2013 Nano Lett. 13 1764
[10] Wu M, Chan S, Jao M and Su W 2016 Solar Energy Mater. Solar Cells 157 447
[11] Mahmud M, Elumalai N, Upama M, Wang D, Chan K, Wright M, Xu C, Haque F and Uddin A 2017 Solar Energy Materials and Solar Cells 159 251
[12] Liu D and Kelly T 2014 Nat. Photon. 8 133
[13] Ke W, Fang G, Liu Q, Xiong L, Qin P, Tao H, Wang J, Lei H, Li B, Wan J, Yang G and Yan Y 2015 J. Am. Chem. Soc. 137 6730
[14] Baena J P C, Steier L, Tress W, Saliba M, Neutzner S, Matsui T, Giordano F, Jacobsson T J, Kandada A R S, Zakeeruddin S M, Petrozza A, Abate A, Nazeeruddin M K, Gratzel M and Hagfeldt A 2015 Energy & Environmental Science 8 2928
[15] You J, Hong Z, Yang Y, Chen Q, Cai M, Song T, Chen C, Lu S, Liu Y, Zhou H and Yang Y 2014 ACS Nano 8 1674
[16] Li J F, Zhao C, Zhang H, Tong J F, Zhang P, Yang C Y, Xia Y J and Fan D W 2016 Chin. Phys. B 25 028402
[17] Lindblad R, Bi D, Park B W, Oscarsson J, Gorgoi M, Siegbahn H, Odelius M, Johansson E M J and Rensmo H 2014 J. Phys. Chem. Lett. 5 648
[18] Zhang T H, Piao L Y, Zhao S L, Xu Z, Wu Q and Kong C 2012 Chin. Phys. B 21 118401
[19] Heo J, Han H, Kim D, Ahn T and Im S 2015 Energy & Environmental Science 8 1602
[20] Xia C, Song W D, Zhang C Z, Yuan S Y, Hu W X, Qin P, Wang R P, Zhao L L, Wang X F, He M and Li S T 2017 Chin. Phys. B 26 018401
[21] Dualeh A, Tétreault N, Moehl T, Gao P, Nazeeruddin M K and Grätzel M 2014 Adv. Funct. Mater. 24 3250
[22] Shi J, Zhang H, Xu X, Li D, Luo Y and Meng Q 2016 Small 12 5288
[23] Huang A, Zhu J, Zheng J, Yu Y, Liu Y, Yang S, Bao S, Lei L and Jin P 2017 Solar Energy Materials and Solar Cells 163 15
[24] Seol D, Lee J and Park N 2015 Chem. Sus. Chem. 8 2414
[25] Zhou Z, Pang S, Liu Z, Xu H and Cui G 2015 J. Mater. Chem. A 3 19205
[26] Wang C and Yang J 2016 Sci. China Mater. 59 743
[27] Zhang R, Elzatahry A A, Al-Deyab S S and Zhao D 2012 Nano Today 7 344
[28] Yuan H L, Li J P and Wang M K 2015 Acta Phys. Sin. 3 038405
[29] Xia X, Li H, Wu W, Li Y, Fei D, Gao C and Liu X 2015 ACS Appl. Mater. Interf. 7 16907
[30] Liu P, Yang B C, Liu G, Wu R S, Zhang C J, Wan F, Li S G, Yang J L, Gao Y L and Zhou C H 2017 Chin. Phys. B 26 058401
[31] Peng Y, Jing G and Cui T 2015 RSC Adv. 5 95847
[32] Shao Y, Xiao Z, Bi C, Yuan Y and Huang J 2014 Nat. Commun. 5 5784
[33] Cai M, Tiong V, Hreid T, Bell J and Wang H 2015 J. Am. Chem. Soc. 3 2784
[34] Juarez-Perez E, Wußler M, Fabregat-Santiago F, Lakus-Wollny K, Mankel E, Mayer T, Jaegermann W and Mora-Sero I 2014 J. Phys. Chem. Lett. 5 680
[35] Zhang J, Juárez-Pérez E, Mora-Seró I, Viana B and Pauporté T 2015 J. Mater. Chem. A 3 4909
[36] Xu W W, Hu L H, Luo X D, Liu P S and Dai S Y 2012 Acta Phys. Sin. 61 088801
[1] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[2] Combined effects of cycling endurance and total ionizing dose on floating gate memory cells
Si-De Song(宋思德), Guo-Zhu Liu(刘国柱), Qi He(贺琪), Xiang Gu(顾祥), Gen-Shen Hong(洪根深), and Jian-Wei Wu(吴建伟). Chin. Phys. B, 2022, 31(5): 056107.
[3] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[4] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[5] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[6] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[7] Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics
Luoran Chen(陈烙然), Hu Wang(王虎), and Yuchuan Shao(邵宇川). Chin. Phys. B, 2022, 31(11): 117803.
[8] Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells
Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画). Chin. Phys. B, 2022, 31(11): 118801.
[9] TiO2/SnO2 electron transport double layers with ultrathin SnO2 for efficient planar perovskite solar cells
Can Li(李灿), Hongyu Xu(徐宏宇), Chongyang Zhi(郅冲阳), Zhi Wan(万志), and Zhen Li(李祯). Chin. Phys. B, 2022, 31(11): 118802.
[10] Recombination-induced voltage-dependent photocurrent collection loss in CdTe thin film solar cell
Ling-Ling Wu(吴玲玲), Guang-Wei Wang(王光伟), Juan Tian(田涓), Dong-Ming Wang(王东明), and De-Liang Wang(王德亮). Chin. Phys. B, 2022, 31(10): 108803.
[11] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[12] Observation of the BEC-BCS crossover in a degenerate Fermi gas of lithium atoms
Xiang-Chuan Yan(严祥传), Da-Li Sun(孙大立), Lu Wang(王璐), Jing Min(闵靖), Shi-Guo Peng(彭世国), and Kai-Jun Jiang(江开军). Chin. Phys. B, 2022, 31(1): 016701.
[13] High efficiency ETM-free perovskite cell composed of CuSCN and increasing gradient CH3NH3PbI3
Tao Wang(汪涛), Gui-Jiang Xiao(肖贵将), Ren Sun(孙韧), Lin-Bao Luo(罗林保), and Mao-Xiang Yi(易茂祥). Chin. Phys. B, 2022, 31(1): 018801.
[14] Understanding the synergistic effect of mixed solvent annealing on perovskite film formation
Kun Qian(钱昆), Yu Li(李渝), Jingnan Song(宋静楠), Jazib Ali, Ming Zhang(张明), Lei Zhu(朱磊), Hong Ding(丁虹), Junzhe Zhan(詹俊哲), and Wei Feng(冯威). Chin. Phys. B, 2021, 30(6): 068103.
[15] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
No Suggested Reading articles found!