Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 018805    DOI: 10.1088/1674-1056/27/1/018805
Special Issue: TOPICAL REVIEW — New generation solar cells
TOPICAL REVIEW—New generation solar cells Prev   Next  

Promise of commercialization: Carbon materials for low-cost perovskite solar cells

Yu Cai(蔡宇)1,2, Lusheng Liang(梁禄生)2, Peng Gao(高鹏)2
1 Department of Chemistry, Fujian Normal University, Fuzhou 350007, China;
2 Laboratory for Advanced Functional Materials, Xiamen Institute of Rare-earth Materials, Chinese Academy of Science, Xiamen 361021, China
Abstract  

Perovskite solar cells (PVSCs) have attracted extensive studies due to their high power conversion efficiency (PCE) with low-cost in both raw material and processes. However, there remain obstacles that hinder the way to their commercialization. Among many drawbacks in PVSCs, we note the problems brought by the use of noble metal counter electrodes (CEs) such as gold and silver. The costly Au and Ag need high energy-consumption thermal evaporation process which can be made only with expensive evaporation equipment under vacuum. All the factors elevate the threshold of PVSCs' commercialization. Carbon material, on the other hand, is a readily available electrode candidate for the application as CE in the PVSCs. In this review, endeavors on PVSCs with low-cost carbon materials will be comprehensively discussed based on different device structures and carbon compositions. We believe that the PVSCs with carbon-based CE hold the promise of commercialization of this new technology.

Keywords:  perovskite solar cell      counter electrode      carbon material      commercialization  
Received:  02 October 2017      Revised:  21 November 2017      Accepted manuscript online: 
PACS:  88.40.H- (Solar cells (photovoltaics))  
  88.40.hj (Efficiency and performance of solar cells)  
  88.40.hm (Cost of production of solar cells)  
Corresponding Authors:  Peng Gao     E-mail:  peng.gao@fjirsm.ac.cn

Cite this article: 

Yu Cai(蔡宇), Lusheng Liang(梁禄生), Peng Gao(高鹏) Promise of commercialization: Carbon materials for low-cost perovskite solar cells 2018 Chin. Phys. B 27 018805

[1] Green M A 2001 Prog. Photovoltaics Res. Appl. 9 123
[2] Shen Y, Chen J, Yang J, Chen B, Chen J, Li F, Dai X, Liu H, Xu Y and Mai Y 2016 Chin. Phys. B 25 118801
[3] Li T, Zhou C L and Wang W J 2016 Chin. Phys. Lett. 33 38801
[4] Li T and Wang W J 2015 Chin. Phys. Lett. 32 28801
[5] Xu W W 2012 Acta Phys. Sin. 61 88801 (in Chinese)
[6] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[7] Liu P, LiuG, Wu R, Zhang C, Wan F, LiS, Yang J, GaoY and Zhou B Y 2017 Chin. Phys. B 26 58401
[8] Du H J, Wang W C and Gu Y F 2017 Chin. Phys. B 26 28803
[9] Xia C, Song W D, Zhang C Z, Yuan S Y, Hu W X, Qin P, Wang R P, Zhao L L, Wang X F, He M and Li S T 2017 Chin. Phys. B 26 18401
[10] Correa-Baena J P, Abate A, Saliba M, Tress W, Jesper Jacobsson T, Grätzel M and Hagfeldt A 2017 Energy Environ. Sci. 10 710
[11] Gao P, Grätzel M and Nazeeruddin M K 2014 Energy Environ. Sci. 7 2448
[12] Gao P, Konrad D, Aghazada S and Nazeeruddin M K 2015 Chim. Int. J. Chem. 69 253
[13] Saparov B and Mitzi D B 2016 Chem. Rev. 116 4558
[14] Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H and Seok S Il 2017 Science 356 1376
[15] Wilks R G and Bär M 2017 Nat. Energy 2 16204
[16] Domanski K, Correa-Baena J P, Mine N, Nazeeruddin M K, Abate A, Saliba M, Tress W, Hagfeldt A and Grätzel M 2016 ACS Nano 10 6306
[17] Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M and Snaith H J 2013 Nat. Commun. 4 2885
[18] Ku Z, Rong Y, Xu M, Liu T and Han H 2013 Sci. Rep. 3 3132
[19] Wei Z, Chen H, Yan K and Yang S 2014 Angew. Chemie Int. Ed. 53 13239
[20] Yang Y, Xiao J, Wei H, Zhu L, Li D, Luo Y, Wu H and Meng Q 2014 RSC Adv. 4 52825
[21] Zhang F, Yang X, Wang H, Cheng M, Zhao J H J and Sun L 2014 ACS Appl. Mater. Interfaces 6 16140
[22] Zhou H, Shi Y, Dong Q, Zhang H, Xing Y, Wang K, Du Y and Ma T 2014 J. Phys. Chem. Lett. 5 3241
[23] Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Gratzel M and Han H 2014 Science 345 295
[24] Rong Y, Ku Z, Mei A, Liu T, Xu M, Ko S, Li X and Han H 2014 J. Phys. Chem. Lett. 5 2160
[25] Cao K, Zuo Z, Cui J, Shen Y, Moehl T, Zakeeruddin S M, Grätzel M and Wang M 2015 Nano Energy 17 171
[26] Liu T, Liu L, Hu M, Yang Y, Zhang L, Mei A and Han H 2015 J. Power Sources 293 533
[27] Wei H, Xiao J, Yang Y, Lv S, Shi J, Xu X, Dong J, Luo Y, Li D and Meng Q 2015 Carbon 93 861
[28] Zhou H, Shi Y, Wang K, Dong Q, Bai X, Xing Y, Du Y and Ma T 2015 J. Phys. Chem. C 119 4600
[29] Liu Z, Zhang M, Xu X, Bu L, Zhang W, Li W, Zhao Z, Wang M, Cheng Y B and He H 2015 Dalt. Trans. 44 3967
[30] Zhang F, Yang X, Cheng M, Li J, Wang W, Wang H and Sun L 2015 J. Mater. Chem. A 3 24272
[31] Xu X, Liu Z, Zuo Z, Zhang M, Zhao Z, Shen Y, Zhou H, Chen Q, Yang Y and Wang M 2015 Nano Lett. 15 2402
[32] Li H, Cao K, Cui J, Liu S, Qiao X, Shen Y and Wang M 2016 Nanoscale 8 6379
[33] Liu Z, Sun B, Shi T, Tang Z and Liao G 2016 J. Mater. Chem. A 4 10700
[34] Tsai C M, Wu H P, Chang S T, Huang C F, Wang C H, Narra S, Yang Y W, Wang C L, Hung C H and Diau E W G 2016 ACS Energy Lett. 1 1086
[35] Wang B X, Liu T F, Zhou Y B, Chen X, Yuan X B, Yang Y Y, Liu W P, Wang J M, Han H W and Tang Y W 2016 Phys. Chem. Chem. Phys. 18 27078
[36] Zhang N, Guo Y, Yin X, He M and Zou X 2016 Mater. Lett. 182 248
[37] Chan C Y, Wang Y, Wu G W and Diau E W G 2016 J. Mater. Chem. A 4 3872
[38] Liu Z, Shi T, Tang Z, Sun B and Liao G 2016 Nanoscale 8 7017
[39] Yue G, Chen D, Wang P, Zhang J, Hu Z and Zhu Y 2016 Electrochim. Acta 218 84
[40] Zhang C, Luo Y, Chen X, Chen Y, Sun Z and Huang S 2016 Nano-Micro Lett. 8 347
[41] Chen H N, Wei Z H, He H X, Zheng X L, Wong K S and Yang S H 2016 Adv. Energy Mater. 6 1502087
[42] Gholipour S, Correa-Baena J P, Domanski K, Matsui T, Steier L, Giordano F, Tajabadi F, Tress W, Saliba M, Abate A, Morteza Ali A, Taghavinia N, Grätzel M and Hagfeldt A 2016 Adv. Energy Mater. 6 1601116
[43] Chang X, Li W, Chen H, Zhu L, Liu H, Geng H, Xiang S, Liu J, Zheng X, Yang Y and Yang S 2016 ACS Appl. Mater. Interfaces 8 30184
[44] Tsai C, Wu G, Narra S, Chang H, Mohanta N, Wu H P, Wang C L and Diau E W G 2017 J. Mater. Chem. A 5 739
[45] Hashmi S G, Martineau D, Li X, Ozkan M, Tiihonen A, Dar M I, Sarikka T, Zakeeruddin S M, Paltakari J, Lund P D and Grätzel M 2017 Adv. Mater. Technol. 2 1600183
[46] Xu L, Wan F, Rong Y, Chen H, He S, Xu X, Liu G, Han H, Yuan Y, Yang J, Gao Y, Yang B and Zhou C 2017 Org. Electron. 45 131
[47] Chen M, Zha R H, Yuan Z Y, Jing Q S, Huang Z Y, Yang X K, Yang S M, Zhao X H, Xu D L and Zou G D 2017 Chem. Eng. J. 313 791
[48] Liu Z, Zhang M, Xu X, Bu L, Zhang W, Li W, Zhao Z, Wang M, Cheng Y B and He H 2015 Dalt. Trans. 44 3967
[49] Xiao Y, Cheng N, Kondamareddy K K, Wang C, Liu P, Guo S and Zhao X Z 2017 J. Power Sources 342 489
[50] Zhang F, Yang X, Cheng M, Wang W and Sun L 2016 Nano Energy 20 108
[51] Yang Y, Ri K, Mei A, Liu L, Hu M, Liu T, Li X and Han H 2015 J. Mater. Chem. A 3 9103
[52] Chen J, Xiong Y, Rong Y, Mei A, Sheng Y, Jiang P, Hu Y, Li X and Han H 2016 Nano Energy 27 130
[53] Rong Y, Hou X, Hu Y, Mei A, Liu L, Wang P and Han H 2017 Nat. Commun. 8 14555
[54] Chen H, Zheng X, Li Q, Yang Y, Xiao S, Hu C, Bai Y, Zhang T, Wong K S and Yang S 2016 J. Mater. Chem. A 4 12897
[55] Chang X, Li W, Zhu L, Liu H, Geng H, Xiang S, Liu J and Chen H 2016 ACS Appl. Mater. Interfaces 8 33649
[56] Li J, Yao J X, Liao X Y, Yu R L, Xia H R, Sun W T, Peng L M, Wu H, Li D, Luo Y, Meng Q, Han H and Snaith H J 2017 RSC Adv. 7 20732
[57] Chen H, Wei Z, Zheng X and Yang S 2015 Nano Energy 15 216
[58] He X, Bai Y, Chen H, Zheng X and Yang S 2016 MRS Adv. 1 3175
[59] Hou X, Hu Y, Liu H, Mei A, Li X, Duan M, Zhang G, Rong Y and Han H 2017 J. Mater. Chem. A 5 73
[60] Cao K, Cui J, Zhang H, Li H, Song J K, Shen Y, Cheng Y B and Wang M K 2015 J. Mater. Chem. A 3 9116
[61] Chen J, Rong Y, Mei A, Xiong Y, Liu T, Sheng Y, Jiang P, Hong L, Guan Y, Zhu X, Hou X, Duan M, Zhao J, Li X and Han H 2016 Adv. Energy Mater. 6 1502009
[62] Wei Z, Yan K, Chen H, Yi Y, Zhang T, Long X, Li J, Zhang L, Wang J and Yang S 2014 Energy Environ. Sci. 7 3326
[63] Li J, Niu G, Li W, Cao K, Wang M and Wang L 2016 131 6050
[64] Xu X, Zhang H, Cao K, Cui J, Lu J, Zeng X, Shen Y and Wang M 2014 ChemSusChem 7 3088
[65] Nouri E, Mohammadi M R and Lianos P 2017 Chem. Commun. 53 1630
[66] Li Z, Kulkarni S A, Boix P P, Shi E, Cao A, Fu K, Batabyal S K, Zhang J, Xiong Q, Wong L H, Mathews N and Mhaisalkar S G 2014 ACS Nano 8 6797
[67] Wang X, Li Z, Xu W, Kulkarni S A, Batabyal S K, Zhang S, Cao A and Wong L H 2015 Nano Energy 11 728
[68] Aitola K, Sveinbjornsson K, Correa Baena J P, Kaskela A, Abate A, Tian Y, Johansson E M J, Grätzel M, Kauppinen E, Hagfeldt A and Boschloo G 2015 Energy Environ. Sci. 9 461
[69] Luo Q, Ma H, Zhang Y, Yin X, Yao Z, Wang N, Li J, Fan S, Jiang K and Lin H 2016 J. Mater. Chem. A 4 5569
[70] Cheng N, Liu P, Qi F, Xiao Y, Yu W, Yu Z, Liu W, Guo S S and Zhao X Z 2016 J. Power Sources 332 24
[71] Zheng X, Chen H, Li Q, Yang Y, Wei Z, Bai Y, Qiu Y, Zhou D, Wong K S and Yang S 2017 Nano Lett. 17 2496
[72] Wei Z, Chen H, Yan K, Zheng X and Yang S 2015 J. Mater. Chem. A 3 24226
[73] Liu S, Cao K, Li H, Song J, Han J, Shen Y and Wang M 2017 Sol. Energy 144 158
[74] You P, Liu Z, Tai Q, Liu S and Yan F 2015 Adv. Mater. 27 3632
[75] Wei W, Hu B, Jin F, Jing Z, Li Y, García Blanco A A, Stacchiola D J and Hu Y H 2017 J. Mater. Chem. A 5 7749
[76] Yan K, Wei Z, Li J, Chen H, Yi Y, Zheng X, Long X, Wang Z, Wang J, Xu J and Yang S 2015 Small 11 2269
[77] McCreery R L 2008 Chem. Rev. 108 2646
[78] Hu R, Chu L, Zhang J and Huang W 2017 J. Power Sources 361 259
[79] Kay A and Grätzel M 1996 Sol. Energy Mater. Sol. Cells 44 99
[80] Zhang L, Liu T, Liu L, Hu M, Yang Y, Mei A and Han H 2015 J. Mater. Chem. A 3 9165
[81] Sutton R J, Eperon G E, Miranda L, Parrott E S, Kamino B A, Patel J B, Hörantner M T, Johnston M B, Haghighirad A A, Moore D T and Snaith H J 2016 Adv. Energy Mater. 6 1502458
[82] Beal R E, Slotcavage D J, Leijtens T, Bowring A R, Belisle R A, Nguyen W H, Burkhard G F, Hoke E T and McGehee M D 2016 J. Phys. Chem. Lett. 7 746
[83] Kulbak M, Cahen D and Hodes G 2015 J. Phys. Chem. Lett. 6 2452
[84] Li W, Li J, Li J, Fan J and Wang L 2016 J. Mater. Chem. A 4 17104
[85] Zhou H, Shi Y, Dong Q, Zhang H, Xing Y, Wang K, Du Y and Ma T 2014 J. Phys. Chem. Lett. 5 3241
[86] Iijima S 1991 Nature 354 56
[87] Habisreutinger S N, Nicholas R J and Snaith H J 2017 Adv. Energy Mater. 7 1601839
[88] Wang F, Kozawa D, Miyauchi Y, Hiraoka K, Mouri S, Ohno Y and Matsuda K 2015 Nat. Commun. 6 6305
[89] Ryu J, Lee K, Yun J, Yu H, Lee J and Jang J 2017 Small 13 1701225
[90] Aitola K, Domanski K, Correa-Baena J P, Sveinbjörnsson K, Saliba M, Abate A, Grätzel M, Kauppinen E, Johansson E M J, Tress W, Hagfeldt A and Boschloo G 2017 Adv. Mater. 29 1606398
[91] Novoselov1 K S, Geim1 A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva1 I V, Firsov A A 2004 Science 306 666
[92] Yin Z, Zhu J, He Q, Cao X, Tan C, Chen H, Yan Q and Zhang H 2014 Adv. Energy Mater. 4 1300574
[93] Bouclé J and Herlin-Boime N 2015 Synth. Met. 222 3
[94] Liu Z, Lau S P and Yan F 2015 Chem. Soc. Rev. 44 5638
[95] Acik M and Darling S B 2016 J. Mater. Chem. A 4 6185
[96] Wang J T W, Ball J M, Barea E M, Abate A, Alexander-Webber J A, Huang J, Saliba M, Mora-Sero I, Bisquert J, Snaith H J and Nicholas R J 2014 Nano Lett. 14 724
[97] Liu Z, You P, Xie C, Tang G and Yan F 2016 Nano Energy 28 151
[98] Sung H, Ahn N, Jang M S, Lee J K, Yoon H, Park N G and Choi M 2016 Adv. Energy Mater. 6 1501873
[99] Yoon J, Sung H, Lee G, Cho W, Ahn N, Jung H S and Choi M 2017 Energy Environ. Sci. 10 337
[100] Wu Z, Bai S, Xiang J, Yuan Z, Yang Y, Cui W, Gao X, Liu Z, Jin Y and Sun B 2014 Nanoscale 6 10505
[101] Yeo J S, Kang R, Lee S, Jeon Y J, Myoung N, Lee C L, Kim D Y, Yun J M, Seo Y H, Kim S S and Na S I 2015 Nano Energy 12 96
[102] Cao J, Liu Y, Jing X, Yin J, Li J, Xu B, Tan Y and Zheng N 2015 J. Am. Chem. Soc. 137 10914
[103] Huang X, Guo H, Yang J, Wang K, Niu X and Liu X 2016 Org. Electron. Phys. Mater. Appl. 39 288
[104] Giuri A, Masi S, Colella S, Listorti A, Rizzo A, Gigli G, Liscio A, Treossi E, Palermo V, Rella S, Malitesta C and Esposito Corcione C 2016 IEEE Trans. Nanotechnol. 15 725
[105] Kim J, Teridi M A M and Yusoff A R 2016 Sci. Rep. 6 27773
[106] Li D, Cui J, Li H, Huang D, Wang M and Shen Y 2016 Sol. Energy 131 176
[107] Eperon G E, Burlakov V M, Goriely A and Snaith H J 2014 ACS Nano 8 591
[108] Roldán-Carmona C, Malinkiewicz O, Betancur R, Longo G, Momblona C, Jaramillo F, Camacho L and Bolink H J 2014 Energy Environ. Sci. 7 2968
[109] Eperon G E, Bryant D, Troughton J, Stranks S D, Johnston M B, Watson T, Worsley D A and Snaith H J 2015 J. Phys. Chem. Lett. 6 129
[110] Bryant D, Greenwood P, Troughton J, Wijdekop M, Carnie M, Davies M, Wojciechowski K, Snaith H J, Watson T and Worsley D 2014 Adv. Mater. 26 7499
[111] You P, Liu Z, Tai Q, Liu S and Yan F 2015 Adv. Mater. 27 3632
[112] Lang F, Gluba M A, Albrecht S, Rappich J, Korte L, Rech B and Nickel N H 2015 J. Phys. Chem. Lett. 6 2745
[113] Gao L L, Liang L, Song X X, Ding B, Yang G J, Fan B, Li C C and Li C C 2016 J. Mater. Chem. A 4 3704
[114] Ding B, Gao L, Liang L, Chu Q, Song X, Li Y, Yang G, Fan B, Wang M, Li C and Li C 2016 ACS Appl. Mater. Interfaces 8 20067
[115] Cai L, Liang L, Wu J, Ding B, Gao L and Fan B 2017 J. Semicond. 38 14006
[116] Priyadarshi A, Haur L J, Murray P, Fu D, Kulkarni S, Xing G, Sum T C, Mathews N and Mhaisalkar S G 2016 Energy Environ. Sci. 9 3687
[117] Hu Y, Si S, Mei A, Rong Y, Liu H, Li X and Han H 2017 Sol. RRL 1 1600019
[118] Grancini G, Roldán-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Graetzel M and Nazeeruddin M K 2017 Nat. Commun. 8 15684
[1] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[2] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[3] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[4] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[5] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[6] Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics
Luoran Chen(陈烙然), Hu Wang(王虎), and Yuchuan Shao(邵宇川). Chin. Phys. B, 2022, 31(11): 117803.
[7] Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells
Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画). Chin. Phys. B, 2022, 31(11): 118801.
[8] Robust and intrinsic type-III nodal points in a diamond-like lattice
Qing-Ya Cheng(程青亚), Yue-E Xie(谢月娥), Xiao-Hong Yan(颜晓红), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2022, 31(11): 117101.
[9] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[10] High efficiency ETM-free perovskite cell composed of CuSCN and increasing gradient CH3NH3PbI3
Tao Wang(汪涛), Gui-Jiang Xiao(肖贵将), Ren Sun(孙韧), Lin-Bao Luo(罗林保), and Mao-Xiang Yi(易茂祥). Chin. Phys. B, 2022, 31(1): 018801.
[11] Understanding the synergistic effect of mixed solvent annealing on perovskite film formation
Kun Qian(钱昆), Yu Li(李渝), Jingnan Song(宋静楠), Jazib Ali, Ming Zhang(张明), Lei Zhu(朱磊), Hong Ding(丁虹), Junzhe Zhan(詹俊哲), and Wei Feng(冯威). Chin. Phys. B, 2021, 30(6): 068103.
[12] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[13] Non-peripherally octaalkyl-substituted nickel phthalocyanines used as non-dopant hole transport materials in perovskite solar cells
Fei Qi(齐飞), Bo Wu(吴波), Junyuan Xu(徐俊源), Qian Chen(陈潜), Haiquan Shan(单海权), Jiaju Xu(许家驹), and Zong-Xiang Xu(许宗祥). Chin. Phys. B, 2021, 30(10): 108801.
[14] SiO2 nanoparticle-regulated crystallization of lead halide perovskite and improved efficiency of carbon-electrode-based low-temperature planar perovskite solar cells
Zerong Liang(梁泽荣), Bingchu Yang(杨兵初), Anyi Mei(梅安意), Siyuan Lin(林思远), Hongwei Han(韩宏伟), Yongbo Yuan(袁永波), Haipeng Xie(谢海鹏), Yongli Gao(高永立), Conghua Zhou(周聪华). Chin. Phys. B, 2020, 29(7): 078401.
[15] Highly efficient bifacial semitransparent perovskite solar cells based on molecular doping of CuSCN hole transport layer
Shixin Hou(侯世欣), Biao Shi(石标), Pengyang Wang(王鹏阳), Yucheng Li(李玉成), Jie Zhang(张杰), Peirun Chen(陈沛润), Bingbing Chen(陈兵兵), Fuhua Hou(侯福华), Qian Huang(黄茜), Yi Ding(丁毅), Yuelong Li(李跃龙), Dekun Zhang(张德坤), Shengzhi Xu(许盛之), Ying Zhao(赵颖), Xiaodan Zhang(张晓丹). Chin. Phys. B, 2020, 29(7): 078801.
No Suggested Reading articles found!