|
|
Performance enhancement of ZnO nanowires/PbS quantum dot depleted bulk heterojunction solar cells with an ultrathin Al2O3 interlayer |
Shuaipu Zang(臧帅普)1, Yinglin Wang(王莹琳)1,2, Meiying Li(李美莹)1, Wei Su(苏蔚)1, Meiqi An(安美琦)1, Xintong Zhang(张昕彤)1,2, Yichun Liu(刘益春)1,2 |
1 Center for Advanced Optoelectronic Materials Research, School of Physics, and Key Laboratory of UV-Emitting Materials and Technology of Chinese Ministry of Education, Northeast Normal University, Changchun 130024, China; 2 National Demonstration Center for Experimental Physics Education, Northeast Normal University, Changchun 130024, China |
|
|
Abstract Depleted bulk heterojunction (DBH) PbS quantum dot solar cells (QDSCs), appearing with boosted short-circuit current density (Jsc), represent the great potential of solar radiation utilization, but suffer from the problem of increased interfacial charge recombination and reduced open-circuit voltage (Voc). Herein, we report that an insertion of ultrathin Al2O3 layer (ca. 1.2 Å thickness) at the interface of ZnO nanowires (NWs) and PbS quantum dots (QDs) could remarkably improve the performance of DBH-QDSCs fabricated from them, i.e., an increase of Voc from 449 mV to 572 mV, Jsc from 21.90 mA/cm2 to 23.98 mA/cm2, and power conversion efficiency (PCE) from 4.29% to 6.11%. Such an improvement of device performance is ascribed to the significant reduction of the interfacial charge recombination rate, as evidenced by the light intensity dependence on Jsc and Voc, the prolonged electron lifetime, the lowered trap density, and the enlarged recombination activation energy. The present research therefore provides an effective interfacial engineering means to improving the overall performance of DBH-QDSCs, which might also be effective to other types of optoelectronic devices with large interface area.
|
Received: 29 September 2017
|
|
Fund:Project supported by the National Natural Science Foundation of China (Grant Nos. 91233204, 51372036, and 51602047), the Key Project of Chinese Ministry of Education (Grant No. 113020A), and the 111 Project, China (Grant No. B13013). |
Corresponding Authors: Yinglin Wang, Xintong Zhang
|
E-mail: wangyl100@nenu.edu.cn;xtzhang@nenu.edu.cn
|
|
|
|
[1] |
Zarei H and Mekfar R 2015 Chin. Phys. B 25 027103
|
[2] |
Deng M T, Vaitiekenas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Krogstrup P, Marcus C M, Nygard J and Majorana 2016 Science 354 1557
|
[3] |
Wei H, Wang G, Wu H, Luo Y, Li D and Meng Q 2016 Acta Phys. Chim. Sin. 32 201
|
[4] |
An X T 2014 Chin. Phys. B 23 107301
|
[5] |
Yan F L, Zhang J C, Yao D Y, Liu F Q, Wang L J, Liu J Q and Wang Z G 2015 Chin. Phys. B 24 024212
|
[6] |
Yuan M, Liu M and Sargent E H 2016 Nat. Energy 1 1
|
[7] |
Lan X, Voznyy O, Kiani A, Arquer F P G D, Abbas A S, Kim G, Liu M, Yang Z, Walters G, Xu J, Yuan M, Ning Z, Fan F, Kanjanaboos P, Kramer I, Zhitomirsky D, Lee P, Perelgut A, Hoogland S and Sargent E H 2016 Adv. Mater. 28 299
|
[8] |
Ip A H, Thon S M, Hoogland S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny L R, Carey G H, Fischer A, Kemp K W, Kramer I J, Ning Z, Labelle A J, Chou K W, Amassian A and Sargent E H 2012 Nat. Nanotech. 7 577
|
[9] |
Wang H, Pedro V G, Kubo T, -Santiago F F, Bisquert J, Sanehira Y, Nakazaki J and Segawa H 2015 J. Phys. Chem. C 119 27265
|
[10] |
Wang Y, Su W, Zang S, Li M, Zhang X and Liu Y 2017 Appl. Phys. Lett. 110 163902
|
[11] |
Zhitomirsky D, Voznyy O, Hoogland S and Sargent E H 2013 ACS Nano 7 5282
|
[12] |
Barkhouse D A R, Debnath R, Kramer I J, Zhitomirsky D, -Abraham A G P, Levina L, Etgar L, Grätzel M and Sargent E H 2011 Adv. Mater. 23 3134
|
[13] |
Wang H, Kubo T, Nakazaki J, Kinoshita T and Segawa H 2013 J. Phys. Chem. Lett. 4 2455
|
[14] |
Kim G, Arquer F P G D, Yoon Y, Lan X, Liu M, Voznyy O, Yang Z, Fan F, Ip A H, Kanjanaboos P, Hoogland S, Kim J Y and Sargent E H 2015 Nano Lett. 15 7691
|
[15] |
Zhang X and Johansson E M 2017 J. Mater. Chem. A 5 303
|
[16] |
Chang J, Kuga Y, Mora-Sero I, Toyoda T, Ogomi Y, Hayase S, Bisquert J and Shen Q 2015 Nanoscale 7 5446
|
[17] |
Zang S, Wang Y, Su W, Zhu H, Li G, Zhang X and Liu Y 2016 Phys. Status Solidi 10 745
|
[18] |
Dong J, Zhao Y, Shi J, Wei H, Xiao J, Xu X, Luo J, Xu J, Li D, Luo Y, Meng Q 2014 Chem. Commun. 50 13381
|
[19] |
Bashiri H, Karami M A and Mohammadnejad S 2017 Chin. Phys. B 26 108801
|
[20] |
Hines M A and Scholes G D 2003 Adv. Mater. 15 1844
|
[21] |
Zang S, Wang Y, Li M, Su W, Zhu H, Zhang X and Liu Y 2017 Sol. Energy Mater. Sol. Cells 169 264
|
[22] |
Xu C, Shin P, Cao L and Gao D 2010 J. Phys. Chem. C 114 125
|
[23] |
Chuang C H M, Brown P R, Bulović V and Bawendi M G 2014 Nat. Mater. 13 796
|
[24] |
Kyaw A K, Wang D H, Wynands D, Zhang J, Nguyen T Q, Bazan G C and Heeger A J 2013 Nano Lett. 13 3796
|
[25] |
Riedel I, Parisi J, Dyakonov V, Lutsen L, Vanderzande D and Hummelen J C 2004 Adv. Funct. Mater. 14 38
|
[26] |
van Duren J K J, X. N. Yang X N, Loos J, Bulle-Lieuwma C W T, Sieval A B, Hummelen J C and Janssen R A J 2004 2004 Adv. Funct. Mater. 14 425
|
[27] |
Chuang C M, Maurano A, Brandt R E, Hwang G W, Jean J, Buonassisi T, Bulovic V and Bawendi M G 2015 Nano Lett. 15 3286
|
[28] |
Rath A, Pelayo Garcia de Arquer F, Stavrinadis A, Lasanta T, Bernechea M, Diedenhofen S L and Konstantatos G 2014 Adv. Mater. 26 4741
|
[29] |
Zaban A, Greenshtein M and Bisquert J 2003 Chem. Phys. Chem. 4 859
|
[30] |
Hochella M F and Carim A H 1988 Surf. Sci. 197 L260
|
[1] |
Chen Wang, Yihong Xu, Cheng Li, Haijun Lin. Improved performance of Ge n+/p diode by combining laser annealing and epitaxial Si passivation[J]. Chin. Phys. B, 2018, 27(1): 18502-018502. |
[2] |
Huiyun Wei, Dongmei Li, Xinhe Zheng, Qingbo Meng. Recent progress of colloidal quantum dot based solar cells[J]. Chin. Phys. B, 2018, 27(1): 18808-018808. |
[3] |
Shoushuai Gao, Zhenwu Jiang, Li Wu, Jianping Ao, Yu Zeng, Yun Sun, Yi Zhang. Interfaces of high-efficiency kesterite Cu2ZnSnS(e)4 thin film solar cells[J]. Chin. Phys. B, 2018, 27(1): 18803-018803. |
[4] |
Cai-Xia Hou, Xin-He Zheng, Rui Jia, Ke Tao, San-Jie Liu, Shuai Jiang, Peng-Fei Zhang, Heng-Chao Sun, Yong-Tao Li. Crystalline silicon surface passivation investigated by thermal atomic-layer-deposited aluminum oxide[J]. Chin. Phys. B, 2017, 26(9): 98103-098103. |
[5] |
Shuai Jiang, Rui Jia, Ke Tao, Caixia Hou, Hengchao Sun, Zhiyong Yu, Yongtao Li. Studies on the polycrystalline silicon/SiO2 stack as front surface field for IBC solar cells by two-dimensional simulations[J]. Chin. Phys. B, 2017, 26(8): 87802-087802. |
[6] |
Wenbo Li, Ling Li, Fangfang Wang, Liu Zheng, Jinghua Xia, Fuwen Qin, Xiaolin Wang, Yongping Li, Rui Liu, Dejun Wang, Yan Pan, Fei Yang. Passivation effects of phosphorus on 4H-SiC (0001) Si dangling bonds: A first-principles study[J]. Chin. Phys. B, 2017, 26(3): 37104-037104. |
[7] |
Xiao-Jie Jia, Chun-Lan Zhou, Jun-Jie Zhu, Su Zhou, Wen-Jing Wang. Effect of PECVD SiNx/SiOyNx-Si interface property on surface passivation of silicon wafer[J]. Chin. Phys. B, 2016, 25(12): 127301-127301. |
[8] |
Zhang Sheng, Wei Ke, Yu Le, Liu Guo-Guo, Huang Sen, Wang Xin-Hua, Pang Lei, Zheng Ying-Kui, Li Yan-Kui, Ma Xiao-Hua, Sun Bing, Liu Xin-Yu. AlGaN/GaN high electron mobility transistorwith Al2O3+BCB passivation[J]. Chin. Phys. B, 2015, 24(11): 117307-117307. |
[9] |
Zhao Lian-Feng, Tan Zhen, Wang Jing, Xu Jun. Improved interfacial and electrical properties of GaSb metal oxide semiconductor devices passivated with acidic (NH4)2S solution[J]. Chin. Phys. B, 2014, 23(7): 78102-078102. |
[10] |
Lin Meng, An Xia, Li Ming, Yun Quan-Xin, Li Min, Li Zhi-Qiang, Liu Peng-Qiang, Zhang Xing, Huang Ru. Fabricating GeO2 passivation layer by N2O plasma oxidation for Ge NMOSFETs application[J]. Chin. Phys. B, 2014, 23(6): 67701-067701. |
[11] |
Zhang Xiang, Liu Bang-Wu, Zhao Yan, Li Chao-Bo, Xia Yang. Influence of annealing temperature on passivation performance of thermal atomic layer deposition Al2O3 films[J]. Chin. Phys. B, 2013, 22(12): 127303-127303. |
[12] |
Li Juan, Luo Chong, Meng Zhi-Guo, Xiong Shao-Zhen, Hoi Sing Kwok. The mechanism of hydrogen plasma passivation for poly-crystalline silicon thin film[J]. Chin. Phys. B, 2013, 22(10): 105101-105101. |
[13] |
Bi Zhi-Wei, Hu Zhen-Hua, Mao Wei, Hao Yue, Feng Qian, Cao Yan-Rong, Gao Zhi-Yuan, Zhang Jin-Cheng, Ma Xiao-Hua, Chang Yong-Ming, Li Zhi-Ming, Mei Nan. Investigation of passivation effects in AlGaN/GaN metal–insulator–semiconductor high electron-mobility transistor by gate–drain conductance dispersion study[J]. Chin. Phys. B, 2011, 20(8): 87307-087307. |
[14] |
Ren Fan, Hao Zhi-Biao, Wang Lei, Wang Lai, Li Hong-Tao, Luo Yi. Effects of SiNx on two-dimensional electron gas and current collapse of AlGaN/GaN high electron mobility transistors[J]. Chin. Phys. B, 2010, 19(1): 17306-017306. |
[15] |
Gu Wen-Ping, Duan Huan-Tao, Ni Jin-Yu, Hao Yue, Zhang Jin-Cheng, Feng Qian, Ma Xiao-Hua. High-electric-field-stress-induced degradation of SiN passivated AlGaN/GaN high electron mobility transistors[J]. Chin. Phys. B, 2009, 18(4): 1601-1608. |
|
|
|
|