Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 127101    DOI: 10.1088/1674-1056/26/12/127101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Tuning electronic properties of the S2/graphene heterojunction by strains from density functional theory

Jun-Hui Lei(雷军辉), Xiu-Fen Wang(王秀峰), Jian-Guo Lin(林建国)
Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
Abstract  Based on the density functional calculations, the structural and electronic properties of the WS2/graphene heterojunction under different strains are investigated. The calculated results show that unlike the free mono-layer WS2, the monolayer WS2 in the equilibrium WS2/graphene heterojunctionis characterized by indirect band gap due to the weak van der Waals interaction. The height of the schottky barrier for the WS2/graphene heterojunction is 0.13 eV, which is lower than the conventional metal/MoS2 contact. Moreover, the band properties and height of schottky barrier for WS2/graphene heterojunction can be tuned by strain. It is found that the height of the schottky barrier can be tuned to be near zero under an in-plane compressive strain, and the band gap of the WS2 in the heterojunction is turned into a direct band gap from the indirect band gap with the increasing schottky barrier height under an in-plane tensile strain. Our calculation results may provide a potential guidance for designing and fabricating the WS2-based field effect transistors.
Keywords:  WS2/graphene heterojunction      density functional theory (DFT)      Schottky barrier      direct/indirect band gap  
Received:  16 July 2017      Revised:  24 August 2017      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  82.65.+r (Surface and interface chemistry; heterogeneous catalysis at surfaces)  
  68.47.Fg (Semiconductor surfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11202178).
Corresponding Authors:  Jian-Guo Lin     E-mail:  lin_j_g@xtu.edu.cn

Cite this article: 

Jun-Hui Lei(雷军辉), Xiu-Fen Wang(王秀峰), Jian-Guo Lin(林建国) Tuning electronic properties of the S2/graphene heterojunction by strains from density functional theory 2017 Chin. Phys. B 26 127101

[1] FerrariA C, Meyer J C, ScardaciV, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S and Roth S 2006 Phys. Rev.Lett. 97 187401
[2] Castro Neto A H, Guinea F, Peres N M R, NovoselovK S and Geim A K 2009 Rev. Mod. Phys. 81 109
[3] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[4] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[5] Wu Y Q, Lin Y M, Bol A A, Jenkins K A, Xia F N, Farmer D B, Zhu Y and Avouris P 2011 Nature 472 74
[6] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[7] Sprinkle M, Siegel D, Hu Y, Hicks J, Tejeda A, Taleb-Ibrahimi A, Le Fevre P, Bertran F, Vizzini S, Enriquez H, Chiang S, Soukiassian P, Berger C, de Heer W A, Lanzara A and Conrad E H 2009 Phys. Rev. Lett. 103 226803
[8] Ba S H, Lee Y, Sharma B K, Lee H J, Kim J H and Ahn J H 2013 Carbon 51 236
[9] Eknapakul T, King P D C, Asakawa M, Buaphet P, He R H, Mo S K, Takagi H, Shen K M, Baumberger F, Sasagawa T, Jungthawan S and Meevasana W 2014 Nano Lett. 14 1312
[10] Yoon Y, Ganapathi K and Salahuddin S 2011 Nano Lett. 11 3768
[11] Georgiou T, Jalil R, Belle B D, Britnell L, Gorbachev R V, Morozov S V, Kim Y J, Gholinia A, Haigh S J, Makarovsky O, Eaves L, Ponomarenko L A, Geim A K, Novoselov K S and Mishchenko A 2012 Nat. Nanotech. 8 100
[12] Gong Y J, Lin J H, Wang X L, Shi G, Lei S D, Lin Z, Zou X L, Ye G L, Vajtai R, Yakobson B I, Terrones H, Terrones M, Tay B K, Lou J, Pantelides S T, Liu Z, Zhou W and Ajayan P M 2014 Nat. Mater. 13 1135
[13] Liu B, Wu L J, ZhaoY Q, Wang L Z and Cai M Q 2016 RSC Adv. 6 92473
[14] Liu B, Wu L J, Zhao Y Q, Wang L Z and Cai M Q 2016 Eur. Phys. J. B 89 80
[15] Geim A K and Grigorieva I V 2013 Nature 499 419
[16] Padilha J E, Fazzio A and da Silva A J R 2015 Phys. Rev. Lett. 114 066803
[17] Zhang W J, Chu C P, Huang J K, Chen C H, Tsai M L, Chang Y H, Liang C T, Chen Y Z, Chueh Y L, He J H, Chou M Y and Li L J 2014 Sci. Rep. 4(7484) 3826
[18] Su J, Feng L P, Zhang Y and Liu Z 2016 Phys. Chem. Chem. Phys. 18 16882
[19] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotech. 5 722
[20] Xue J M, Sanchez Y J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P and Leroy B J 2011 Nat. Mater. 10 282
[21] He Jun, Chen K Q, Fan Z Q, Tang L M and Hu W P 2010 Appl. Phys. Lett. 97 193305
[22] Xie Z X, Zhou W X, Tang L M and Chen K Q 2016 Carbon 100 492
[23] Peng J, Zhou Y H and Chen K Q 2015 Org. Electron. 27 137
[24] Neek-Amal M, Sadeghi A, Berdiyorov G R and Peeters F M 2013 Appl. Phys. Lett. 103 261904
[25] Cai Y, Chu C P, Wei C M and Chou M Y 2013 Phys. Rev. B 88 245408
[26] Liu B, Wu L J, Zhao Y Q, Wang L Z and Cai M Q 2016 J. Magn. Magn. Mater. 420 218
[27] Liu B, Wu L J, Zhao Y Q, Wang L Z and Caii M Q 2016 Phys. Chem. Chem. Phys. 18 19918
[28] Ning F, Wang D, Tang L M, Zhang Y and Chen K Q 2014 J. Appl. Phys. 116 094308
[29] Hui Y Y, Liu X, Jie W, Chan N Y, Hao J, Su Y T, Li L J, Guo W and Lau S P 2013 ACS Nano 7 7126
[30] He K, Poole C, Mak K F and Shan J 2013 Nano Lett. 13 2931
[31] Hu W, Wang T and Yang J L 2015 J Mater. Chem. C 3 4756
[32] Peelaers H and Van de Walle C G 2012 Phys. Rev. B 86 241401
[33] Liu B, Wu L J, Zhao Y Q, Wang L Z and Cai M Q 2015 Phys. Chem. Chem. Phys. 17 27088
[34] Ganatra R and Zhang Q 2014 ACS Nano 8 4074
[35] Zhao Y Q, Wu L J, Liu B, Wang L Z, He P B and Cai M Q 2016 J. Power Sources 313 96
[36] Cao D, Liu B, Yu H L, Hu W Y and Cai M Q 2013 Eur. Phys. J. B 86 504
[37] Cao D, Liu B, Yu H L, Hu W Y and Cai M Q 2015 Eur. Phys. J. B 88 75
[38] Blochl P E 1994 Phys. Rev. B 50 17953
[39] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[40] Grimme S and Semiempirical 2006 Comput. Chem. 27 1787
[41] Zhao Y Q, Liu B, Yu Z L, Ma J M, Wan Q, He P B and Cai M Q 2017 J. Mater. Chem. C 5 5356
[42] Wu L J, ZhaoY Q, Chen C W, Wang L Z, Liu B and Cai M Q 2016 Chin. Phys. B 25 107202
[43] Wang L Z, ZhaoY Q, Liu B, Wu L J and Cai M Q 2016 Phys. Chem. Chem. Phys. 18 22188
[44] Zhao Y Q, Liu B, Yu Z L, Cao D and Cai M Q 2017 Electrochim. Acta 247 891
[45] Hu W, Wang T, Zhang R Q and Yang J L 2016 J. Mater. Chem. C 4 1776
[46] Cai M Q, Du Y and Huang B Y 2011 Appl. Phys. Lett. 98 102907
[47] Cai M Q, Zheng Y, Wang B and Yang G W 2009 Appl. Phys. Lett. 95 232901
[48] Cao D, Cai M Q, Hu W Y, Peng J, Zheng Y and Huang H T 2011 Appl. Phys. Lett. 98 031910.
[49] Cai M Q, Zheng Y and Woo C H 2011 J. Appl. Phys. 109 024103.
[50] Cao D, Cai M Q and Hu W Y 2011 J. Appl. Phys. 109 114107.
[51] Gong C, Colombo L, Wallace R M and Cho K 2014 Nano Lett. 14 1714
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[3] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[4] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[5] Hybrid-anode structure designed for a high-performance quasi-vertical GaN Schottky barrier diode
Qiliang Wang(王启亮), Tingting Wang(王婷婷), Taofei Pu(蒲涛飞), Shaoheng Cheng(成绍恒),Xiaobo Li(李小波), Liuan Li(李柳暗), and Jinping Ao(敖金平). Chin. Phys. B, 2022, 31(5): 057702.
[6] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[7] Design of vertical diamond Schottky barrier diode with junction terminal extension structure by using the n-Ga2O3/p-diamond heterojunction
Wang Lin(林旺), Ting-Ting Wang(王婷婷), Qi-Liang Wang(王启亮), Xian-Yi Lv(吕宪义), Gen-Zhuang Li(李根壮), Liu-An Li(李柳暗), Jin-Ping Ao(敖金平), and Guang-Tian Zou(邹广田). Chin. Phys. B, 2022, 31(10): 108105.
[8] Probing structural and electronic properties of divalent metal Mgn+1 and SrMgn (n = 2–12) clusters and their anions
Song-Guo Xi(奚松国), Qing-Yang Li(李青阳), Yan-Fei Hu(胡燕飞), Yu-Quan Yuan(袁玉全), Ya-Ru Zhao(赵亚儒), Jun-Jie Yuan(袁俊杰), Meng-Chun Li(李孟春), and Yu-Jie Yang(杨雨杰). Chin. Phys. B, 2022, 31(1): 016106.
[9] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[10] Device topological thermal management of β-Ga2O3 Schottky barrier diodes
Yang-Tong Yu(俞扬同), Xue-Qiang Xiang(向学强), Xuan-Ze Zhou(周选择), Kai Zhou(周凯), Guang-Wei Xu(徐光伟), Xiao-Long Zhao(赵晓龙), and Shi-Bing Long(龙世兵). Chin. Phys. B, 2021, 30(6): 067302.
[11] Effect of electrical contact on performance of WSe2 field effect transistors
Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(6): 068501.
[12] Degradation of β-Ga2O3 Schottky barrier diode under swift heavy ion irradiation
Wen-Si Ai(艾文思), Jie Liu(刘杰), Qian Feng(冯倩), Peng-Fei Zhai(翟鹏飞), Pei-Pei Hu(胡培培), Jian Zeng(曾健), Sheng-Xia Zhang(张胜霞), Zong-Zhen Li(李宗臻), Li Liu(刘丽), Xiao-Yu Yan(闫晓宇), and You-Mei Sun(孙友梅). Chin. Phys. B, 2021, 30(5): 056110.
[13] Investigation of electronic, elastic, and optical properties of topological electride Ca3Pb via first-principles calculations
Chang Sun(孙畅), Xin-Yu Cao(曹新宇), Xi-Hui Wang(王西惠), Xiao-Le Qiu(邱潇乐), Zheng-Hui Fang(方铮辉), Yu-Jie Yuan(袁宇杰), Kai Liu(刘凯), and Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(5): 057104.
[14] Vertical GaN Shottky barrier diode with thermally stable TiN anode
Da-Ping Liu(刘大平), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), Liu-An Li(李柳暗), Shao-Heng Cheng(成绍恒), and Qi-Liang Wang(王启亮). Chin. Phys. B, 2021, 30(3): 038101.
[15] Detailed structural, mechanical, and electronic study of five structures for CaF2 under high pressure
Ying Guo(郭颖), Yumeng Fang(方钰萌), and Jun Li(李俊). Chin. Phys. B, 2021, 30(3): 030502.
No Suggested Reading articles found!