Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 126104    DOI: 10.1088/1674-1056/26/12/126104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Zn-Cu-codoped SnO2 nanoparticles:Structural, optical, and ferromagnetic behaviors

Syed Zulfiqar1,2, Zainab Iqbal3, Jianguo Lü(吕建国)1
1. State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China;
2. Department of Physics, Abdul Wali Khan University, Mardan 23200, Khyber Pukhtunkhwa, Pakistan;
3. Institute of Chemical Sciences, University of Peshawar, Khyber Pukhtunkhwa, 25120, Pakistan
Abstract  Zn-Cu-codoped SnO2 nanoparticles have been synthesized by chemical precipitation method. All nanoparticles are crystalline, with the average size increases from 2.55 nm to 4.13 nm as the calcination temperature increases from 400℃ to 600℃. The high calcination temperature can enhance the crystalline quality and grain growth. The oxygen content decreases with decreasing calcination temperature; at a low temperature of 400℃, Zn-Cu-codoped SnO2 nanoparticles are in a rather oxygen-poor state having many oxygen vacancies. The optical band gap energies of Zn-Cu-codoped SnO2 nanoparticles calcined at 400℃ and 600℃ are decreased from 3.93 eV to 3.62 eV due to quantum confinement effects. Both samples exhibit room-temperature ferromagnetism, with a larger saturation magnetization at 400℃ due to the presence of large density of defects such as oxygen vacancies. Zn-Cu-codoped SnO2 nanoparticles exhibit large optical band gap energies and room temperature ferromagnetism, which make them potential candidates for applications in optoelectronics and spintronics.
Keywords:  SnO2 nanoparticles      Zn-Cu codoping      optical band gap energy      ferromagnetism  
Received:  12 July 2017      Revised:  09 September 2017      Accepted manuscript online: 
PACS:  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  
Fund: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LR16F040001).
Corresponding Authors:  Jianguo Lü     E-mail:  lujianguo@zju.edu.cn

Cite this article: 

Syed Zulfiqar, Zainab Iqbal, Jianguo Lü(吕建国) Zn-Cu-codoped SnO2 nanoparticles:Structural, optical, and ferromagnetic behaviors 2017 Chin. Phys. B 26 126104

[1] Ansari S A, Khan M M, Ansari M O, Lee J and Cho M H 2014 New J. Chem. 38 2462
[2] Asdim, Manseki K, Sugiura T and Yoshida T 2014 New J. Chem. 38 598
[3] Hays J, Punnoose A, Baldner R, Engelhard M H, Peloquin J and Reddy K M 2005 Phys. Rev. B 72 075203
[4] Ogale S B, Choudhary R J, Buban J P and Lofland S E 2003 Phys. Rev. Lett. 91 077205
[5] Matti A, Mäki J and Rantala T 2001 Phys. Rev. B 64 075407
[6] Chen X, Liu L, Yu P Y and Mao S 2011 Science 331 746
[7] Li L, Liu X, Zhang Y, Nuhfer N T, Barmak K, Salvador P A and Rohrer G S 2013 ACS Appl. Mater. Interfaces 5 5064
[8] Kamble V B and Umarji A M 2013 AIP Adv. 3 082120
[9] Li N, Liu K G, Xie Y, Zhou G, Zhu J, Li F and Cheng H M 2013 J. Mater. Chem. A 1 1536
[10] Ansari S A, Khan M M, Kalathil S, Nisar A, Lee J and Cho M H 2013 Nanoscale 5 9238
[11] Cheng Z D, Tang Z and Zhu J 2011 Chin. Phys. Lett. 28 037501
[12] Xie D N, Peng H S, Huang S H, You F T and Wang X H 2014 Acta Phys. Sin. 63 147801(in Chinese)
[13] Hu M, Wu Y Q and Tian Y M 2017 Chin. Phys. B 26 020701
[14] Li Q J and Liu B B 2016 Chin. Phys. B 25 076107
[15] Kirszensztejn P, Tolinska A and Przekop R 2009 Therm. Anal. Calorim. 95 93
[16] Jiamiao N, Zhao X and Zhao J 2012 Surf. Coat. Technol. 206 4356
[17] Nomura K, Okabayashi J, Okamura K and Yamada Y 2011 J. Appl. Phys. 110 083901
[18] Cerri J A, Leite E R, Gouvea D and Longo E 1996 J. Am. Ceram. Soc. 79 799
[19] Lu J G, Ye Z Z, Zeng Y J, Zhu L P, Wang L, Yuan J, Zhao B H and Liang Q L 2006 J. Appl. Phys. 100 073714
[20] Mehraj S, Ansari M S and Alimuddin 2015 Physica E 65 84
[21] Sahay P P, Mishra R K, Pandey S N, Jha S and Shamsuddin M 2013 Current Appl. Phys. 13 479
[22] Sinha A K, Manna P K, Pradhan M, Mondal C, Yusuf S M and Pal T 2014 RSC Adv. 4 208
[23] Popescu D A and Verduraz F B 2001 Catalysis Today 70 139
[24] Kittilstved K R, Norberg N S and Gamelin D R 2005 Phys. Rev. Lett. 94 147204
[25] Mehraj S, Ansari M S and Alimuddin 2013 Physica B 430 106
[26] Zulfiqar, Yuan Y L, Jiang Q J, Yang J, Feng L S, Wang W C, Ye Z Z and Lu J G 2016 J. Mater. Sci. 27 9541
[27] Senthilkumar V, Vickraman P and Ravikumar R J 2010 J. Sol-Gel Sci. Technol. 53 316
[28] Kamble V B, Bhatt S V and Umarji A M 2013 J. Appl. Phys. 113 244307
[29] Mehraj S, Anasari M S and Alimuddin 2015 Thin Solid Films 589 57
[30] Yuan C Z, Quan C Z, Kun P R and Jie W S 2013 Chin. Phys. Lett. 30 027804
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[4] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[5] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[6] Effects of Ni substitution on multiferroic properties in Bi5FeTi3O15 ceramics
Hui Sun(孙慧), Jiaying Niu(钮佳颖), Haiying Cheng(成海英), Yuxi Lu(卢玉溪), Zirou Xu(徐紫柔), Lei Zhang(张磊), and Xiaobing Chen(陈小兵). Chin. Phys. B, 2021, 30(10): 107701.
[7] Point-contact spectroscopy on antiferromagnetic Kondo semiconductors CeT2Al10 (T=Ru and Os)
Jie Li(李洁), Li-Qiang Che(车利强), Tian Le(乐天), Jia-Hao Zhang(张佳浩), Pei-Jie Sun(孙培杰), Toshiro Takabatake, Xin Lu(路欣). Chin. Phys. B, 2020, 29(7): 077103.
[8] Seeing Dirac electrons and heavy fermions in new boron nitride monolayers
Yu-Jiao Kang(康玉娇), Yuan-Ping Chen(陈元平), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Yue-E Xie(谢月娥). Chin. Phys. B, 2020, 29(5): 057303.
[9] Microstructure and ferromagnetism of heavily Mn doped SiGe thin flims
Huanming Wang(王焕明), Sen Sun(孙森), Jiayin Xu(徐家胤), Xiaowei Lv(吕晓伟), Yuan Wang(汪渊), Yong Peng(彭勇), Xi Zhang(张析), Gang Xiang(向钢). Chin. Phys. B, 2020, 29(5): 057504.
[10] Defect induced room-temperature ferromagnetism and enhanced photocatalytic activity in Ni-doped ZnO synthesized by electrodeposition
Deepika, Raju Kumar, Ritesh Kumar, Kamdeo Prasad Yadav, Pratyush Vaibhav, Seema Sharma, Rakesh Kumar Singh, and Santosh Kumar†. Chin. Phys. B, 2020, 29(10): 108503.
[11] Homogeneous and inhomogeneous magnetic oxide semiconductors
Xiao-Li Li(李小丽), Xiao-Hong Xu(许小红). Chin. Phys. B, 2019, 28(9): 098506.
[12] Crystallographic and magnetic properties of van der Waals layered FePS3 crystal
Qi-Yun Xie(解其云), Min Wu(吴敏), Li-Min Chen(陈丽敏), Gang Bai(白刚), Wen-Qin Zou(邹文琴), Wei Wang(王伟), Liang He(何亮). Chin. Phys. B, 2019, 28(5): 056102.
[13] Two-dimensional XSe2 (X=Mn, V) based magnetic tunneling junctions with high Curie temperature
Longfei Pan(潘龙飞), Hongyu Wen(文宏玉), Le Huang(黄乐), Long Chen(陈龙), Hui-Xiong Deng(邓惠雄), Jian-Bai Xia(夏建白), Zhongming Wei(魏钟鸣). Chin. Phys. B, 2019, 28(10): 107504.
[14] Progress of novel diluted ferromagnetic semiconductors with decoupled spin and charge doping: Counterparts of Fe-based superconductors
Shengli Guo(郭胜利), Fanlong Ning(宁凡龙). Chin. Phys. B, 2018, 27(9): 097502.
[15] Magnetism induced by Mn atom doping in SnO monolayer
Ruilin Han(韩瑞林), Yu Yan(闫羽). Chin. Phys. B, 2018, 27(11): 117505.
No Suggested Reading articles found!