Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 120202    DOI: 10.1088/1674-1056/26/12/120202
GENERAL Prev   Next  

Temperature dependence of migration features of self-interstitials in zirconium

Rui Zhong(钟睿), Qing Hou(侯氢), Chao-Qiong Ma(马超琼), Bao-Qin Fu(付宝勤), Jun Wang(汪俊)
Key Laboratory for Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
Abstract  Molecular dynamics simulations are conducted to study self-interstitial migration in zirconium. By defining crystal lattice points where more than one atom is present in corresponding Wigner-Seitz cells, as the locations of self-interstitial atoms (LSIAs), three types of events are identified as LSIA migrations:the jump remaining in one 〈1120〉 direction (ILJ), the jump from one 〈1120〉 to another 〈1120〉 direction in the same basal plane (OLJ), and the jump from one basal plane to an adjacent basal plane (OPJ). The occurrence frequencies of the three types are calculated. ILJ is found to be a dominant event in a temperature range from 300 K to 1200 K, but the occurrence frequencies of OLJ and OPJ increase with temperature increasing. The total occurrence frequency of all jump types has a good linear dependence on temperature. Moreover, the migration trajectories of LSIAs in the hcp basal-plane is not what is observed if only conventional one-or two-dimensional migrations exists; rather, they exhibit the feature that we call fraction-dimensional. Using Monte Carlo simulations, the potential kinetic effects of fraction-dimensional migration, which is measured by the average number of lattice sites visited per jump event (denoted by nSPE), are analysed. The significant differences between the nSPE value of the fraction-dimensional migration and those of conventional one-and two-dimensional migrations suggest that the conventional diffusion coefficient cannot give an accurate description of the underlying kinetics of SIAs in Zr. This conclusion could be generally meaningful for the cases where the low-dimensional migration of defects are observed.
Keywords:  molecular dynamics      self-interstitial of zirconium      anisotropic migration      multiscale simulations  
Received:  16 May 2017      Revised:  04 September 2017      Accepted manuscript online: 
PACS:  02.70.Ns (Molecular dynamics and particle methods)  
  66.30.-h (Diffusion in solids)  
  24.10.Lx (Monte Carlo simulations (including hadron and parton cascades and string breaking models))  
  61.72.-y (Defects and impurities in crystals; microstructure)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 91126001) and the National Magnetic Confinement Fusion Program of China (Grant No. 2013GB109002).
Corresponding Authors:  Qing Hou     E-mail:  qhou@scu.edu.cn

Cite this article: 

Rui Zhong(钟睿), Qing Hou(侯氢), Chao-Qiong Ma(马超琼), Bao-Qin Fu(付宝勤), Jun Wang(汪俊) Temperature dependence of migration features of self-interstitials in zirconium 2017 Chin. Phys. B 26 120202

[1] Was G S 2007 Fundamentals of Radiation Materials Science (Berlin:Springer-Verlag)
[2] Samaras M, Victoria M and Hoffelner W 2009 J. Nucl. Mater. 392 286
[3] Wen H H and Woo C H 2012 J. Nucl. Mater. 420 362
[4] Arevalo C, Caturla M J and Perlado J M 2007 J. Nucl. Mater. 362 293
[5] Barashev A V, Golubov S I and Stoller R E 2015 J. Nucl. Mater. 461 85
[6] Woo C H and Liu X 2007 Phil. Mag. 87 2355
[7] Woo C H 1988 J. Nucl. Mater. 159 237
[8] Semenov A A and Woo C H 2006 Phys. Rev. B 74 024108
[9] Pasianot R C, Monti A M, Simonelli G and Savino E J 2000 J. Nucl. Mater. 276 230
[10] Osetsky Y N, Bacon D J and Diego N 2002 Metall. Mater. Trans. A 33 777
[11] Woo C H, Huang H and Zhu W J 2003 Appl. Phys. A 76 101
[12] Domain C 2006 J. Nucl. Mater. 351 1
[13] De Diego N, Osetsky Y N and Bacon D J 2008 J. Nucl. Mater. 374 87
[14] De Diego N, Serra A, Bacon D J and Osetsky Y N 2011 Modelling Simul. Mater. Sci. Eng. 19 035003.
[15] Verite G, Domain C, Fu C C, Gasca P, Legris A and Willaime F 2013 Phys. Rev. B 87 134108
[16] Samolyuk G D, Barashev A V, Golubov S I, Osetksy Y N and Stoller R E 2014 Acta Mater. 78 173
[17] Varvenne C, Bruneval F, Marinica M C and Clouet E 2013 Phys. Rev. B 88 134102
[18] Christensen M, Wolf W, Freeman C, Wimmer E, Adamson R B, Hallstadius L, Cantonwine P E and Mader E V 2015 J. Nucl. Mater. 460 82
[19] Fan Y, Yip S and Yildiz B 2014 J. Phys.:Condens. Matter 26 365402
[20] Willaime F 2003 J. Nucl. Mater. 323 205
[21] Peng Q, Ji W, Huang H C and De S 2012 J. Nucl. Mater. 429 233
[22] Willaime F and Massobrio C 1991 Phys. Rev. B 43 11653
[23] Christien F and Barbu A 2005 J. Nucl. Mater. 346 272
[24] Mendelev M I and Ackland G J 2007 Phil Mag. Lett. 87 349
[25] Vineyard G H 1957 J. Chem. Phys. Solids 3 121
[26] Ackland G J, Wooding S J and Bacon D J 1995 Phil. Mag. A 71 553
[27] Mendelev M I and Bokstein B S 2010 Phil. Mag. 90 637
[28] Hou Q, Li M, Zhou Y L, Cui J C, Cui Z G and Wang J 2013 Comput. Phys. Commun. 184 2091
[29] Nordlund K, Ghaly M, Averback R S, Caturla M, De La Rubia T D and Tarus J 1998 Phys. Rev. B 57 7556
[30] Becquart C S and Domain C 2009 J. Nucl. Mater. 385 223
[31] Henkelman G, Uberuaga B P and Jonsson H 2000 J. Chem. Phys. 113 9901
[32] Chandrasekhar S 1943 Rev. Mod. Phys. 15 1
[33] Barashev A V and Golubov S I 2009 Phil. Mag. 89 2833
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[12] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[13] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[14] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[15] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
No Suggested Reading articles found!