Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 127701    DOI: 10.1088/1674-1056/26/12/127701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Near-interface oxide traps in 4H-SiC MOS structures fabricated with and without annealing in NO

Qiu-Jie Sun(孙秋杰)1, Yu-Ming Zhang(张玉明)1, Qing-Wen Song(宋庆文)1, Xiao-Yan Tang(汤晓燕)1, Yi-Meng Zhang(张艺蒙)1, Cheng-Zhan Li(李诚瞻)2, Yan-Li Zhao(赵艳黎)2, Yi-Men Zhang(张义门)1
1. Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;
2. Zhuzhou CRRC Times Electric Company Limited, Zhuzhou 412001, China
Abstract  Near-interface oxide traps (NIOTs) in 4H-SiC metal-oxide-semiconductor (MOS) structures fabricated with and without annealing in NO are systematically investigated in this paper. The properties of NIOTs in SiC MOS structures prepared with and without annealing in NO are studied and compared in detail. Two main categories of the NIOTs, the “slow” and “fast” NIOTs, are revealed and extracted. The densities of the “fast” NIOTs are determined to be 0.76×1011 cm-2 and 0.47×1011 cm-2 for the N2 post oxidation annealing (POA) sample and NO POA sample, respectively. The densities of “slow” NIOTs are 0.79×1011 cm-2 and 9.44×1011 cm-2 for the NO POA sample and N2 POA sample, respectively. It is found that the NO POA process only can significantly reduce “slow” NIOTs. However, it has a little effect on “fast” NIOTs. The negative and positive constant voltage stresses (CVS) reveal that electrons captured by those “slow” NIOTs and bulk oxide traps (BOTs) are hardly emitted by the constant voltage stress.
Keywords:  4H-SiC      MOS      Near-Interface      Oxide      traps  
Received:  14 June 2017      Revised:  22 August 2017      Accepted manuscript online: 
PACS:  77.22.Jp (Dielectric breakdown and space-charge effects)  
  73.20.-r (Electron states at surfaces and interfaces)  
  77.84.Lf (Composite materials)  
Fund: Project supported by the National Key Basic Research Program of China (Grant No. 2015CB759600), the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2017JM6003), and the National Natural Science Foundation of China (Grant Nos. 61774117 61404098 and 61274079).
Corresponding Authors:  Qing-Wen Song, Qing-Wen Song     E-mail:  qwsong@xidian.edu.cn;xytang@mail.xidian.edu.cn

Cite this article: 

Qiu-Jie Sun(孙秋杰), Yu-Ming Zhang(张玉明), Qing-Wen Song(宋庆文), Xiao-Yan Tang(汤晓燕), Yi-Meng Zhang(张艺蒙), Cheng-Zhan Li(李诚瞻), Yan-Li Zhao(赵艳黎), Yi-Men Zhang(张义门) Near-interface oxide traps in 4H-SiC MOS structures fabricated with and without annealing in NO 2017 Chin. Phys. B 26 127701

[1] Kimoto T 2015 Jpn. J. Appl. Phys. 54 040103
[2] Song QW, Zhang Y M, Han J S, Tanner Philip, Dimitrijev Sima, Zhang Y M, Tang X Y and Guo H 2013 Chin. Phys. B 22 027302
[3] Song QW, Tang X Y, He Y J, Tang G N, Wang Y H, Zhang Y M, Guo H, Jia R X, Lv H L, Zhang Y M and Zhang Y M 2016 Chin. Phys. B 25 037306
[4] Moghadam H A, Dimitrijev S, Han J, Haasmann D and Aminbeidokhti A 2015 IEEE Trans. Electron Dev. 62 2670
[5] Okamoto M, Makifuchi Y, Iijima M, Sakai Y, Iwamuro N, Kimura H, Fukuda K and Okumura H 2012 Appl. Phys. Express 5 041302
[6] Yano H, Katafuchi F, Kimoto T and Matsunami H 1999 IEEE Trans. Electron Dev. 46 504
[7] Tilak V, Matocha K, Dunne G, Allerstam F and Sveinbjornsson E O 2009 IEEE Trans. Electron Dev. 56 162
[8] Saks N S, Mani S S, Agarwal A K and Hegde V S 2000 Mater. Sci. Forum 338-342 737
[9] Potbhare S, Goldsman N, Pennington G, Lelis A and McGarrity J 2006 J. Appl. Phys. 100 044515
[10] Lelis A J, Habersat D, Green R, Ogunniyi A, Gurfinkel M, Suehle J and Goldsman N 2008 IEEE Trans. Electron Dev. 55 1835
[11] Bhat N and Saraswat K C 1998 J. Appl. Phys. 84 2722
[12] Tanner P, Dimitrijev S and Harrison H B 1995 Electron. Lett. 31 1880
[13] Lai S K and Young D R 1981 J. Appl. Phys. 52 6231
[14] Pintilie I, Teodorescu C M, Moscatelli F, Nipoti R, Poggi A, Solmi S, Lovlie LS and Svensson B G 2010 J. Appl. Phys. 108 024503
[15] Deák P, Knaup J M, Hornos T, Thill C, Gali A and Frauenheim T 2007 J. Phys. D:Appl. Phys. 40 6242
[16] Rozen J, Nagano M and Tsuchida H 2013 J. Mater. Res. 28 28
[17] Afanas'ev V V, Stesmans A, Ciobanu F, Pensl G, Cheong K Y and Dimitrijev S 2003 Appl. Phys. Lett. 82 568
[18] Haasmann D, Dimitrijev S, Han J S and Iacopi A 2014 Mater. Sci. Forum 778 627
[19] Pensl G, Beljakowa S, Frank T, Gao K, Speck F, Seyller T, Ley L, Ciobanu F, Afanas'ev V, Stesmans A, Kimoto T mand Schöner A 2008 Phys. Status. Solidi B 245 1378
[20] DasGupta S, Brock R, Kaplar R, Marinella M, Smith M and Atcitty S 2011 Appl. Phys. Lett. 99 023503
[21] Chung G Y, Tin C C, Williams J R, McDonald K, Chanana R K, Weller R A, Pantelides S T, Feldman L C, Holland O W, Das M K and Palmour J W 2001 IEEE Electron Dev. Lett. 22 176
[22] Afanas'ev V V and Stesmans A 2000 Mater. Sci. Eng. B 71 309
[23] Rudenko T E, Osiyuk I N, Tyagulski I P, Olafsson H O, andSveinbjornsson E O 2005 Solid State Electron 49 545
[24] Hijikata Y, Yaguchi H, Yoshida S, Ishida Y and Yoshikawa M 2005 J. Vac. Sci. Technol. A 23 298
[25] Moghadam H A, Dimitrijev S, Han J, Aminbeidokhti A and Haasmann, D 2016 Mater. Sci. Forum 858 603
[26] Fiorenza P, Magna A L, Vivona M and Roccaforte F 2016 Appl. Phys. Lett. 109 012102
[27] Okamoto D, Yano H, Hatayama T and Takashi Fuyuki 2010 Appl. Phys. Lett. 96 203508
[28] Pensl G, Beljakowa S, Frank T, Gao K, Speck F, Seyller T, Ley L, Ciobanu F, Afanas'ev V, Stesmans A, Kimoto T and Schoner A 2008 Phys. Status Solidi B 245 1378
[1] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[2] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[3] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[4] Giant saturation absorption of tungsten trioxide film prepared based on the seedless layer hydrothermal method
Xiaoguang Ma(马晓光), Fangzhen Hu(胡芳珍), Xi Chen(陈希), Yimeng Wang(王艺盟), Xiaojian Hao(郝晓剑), Min Gu(顾敏), and Qiming Zhang(张启明). Chin. Phys. B, 2023, 32(3): 034212.
[5] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[6] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[7] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[8] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[9] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[10] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[11] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[12] Optical second-harmonic generation of Janus MoSSe monolayer
Ce Bian(边策), Jianwei Shi(史建伟), Xinfeng Liu(刘新风), Yang Yang(杨洋), Haitao Yang(杨海涛), and Hongjun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097304.
[13] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[14] Degradation and breakdown behaviors of SGTs under repetitive unclamped inductive switching avalanche stress
Chenkai Zhu(朱晨凯), Linna Zhao(赵琳娜), Zhuo Yang(杨卓), and Xiaofeng Gu(顾晓峰). Chin. Phys. B, 2022, 31(9): 097303.
[15] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
No Suggested Reading articles found!