Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 124210    DOI: 10.1088/1674-1056/26/12/124210
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Output light power of InGaN-based violet laser diodes improved by using a u-InGaN/GaN/AlGaN multiple upper waveguide

Feng Liang(梁锋)1,2, De-Gang Zhao(赵德刚)1,3, De-Sheng Jiang(江德生)1, Zong-Shun Liu(刘宗顺)1, Jian-Jun Zhu(朱建军)1, Ping Chen(陈平)1, Jing Yang(杨静)1, Wei Liu(刘炜)1, Shuang-Tao Liu(刘双韬)1, Yao Xing(邢瑶)1, Li-Qun Zhang(张立群)4, Wen-Jie Wang(王文杰)5, Mo Li(李沫)5, Yuan-Tao Zhang(张源涛)1, Guo-Tong Du(杜国同)1
1. State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Science, Beijing 100083, China;
2. College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
3. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
4. Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China;
5. Microsystem & Terahertz Research Center, Chinese Academy of Engineering Physics, Chengdu 610200, China
Abstract  

The upper waveguide (UWG) has direct influences on the optical and electrical characteristics of the violet laser diode (LD) by changing the optical field distribution or barrier of the electron blocking layer (EBL). In this study, a series of InGaN-based violet LDs with different UWGs are investigated systematically with LASTIP software. It is found that the output light power (OLP) under an injecting current of 120 mA or the threshold current (Ith) is deteriorated when the UWG is u-In0.02Ga0.98N/GaN or u-In0.02Ga0.98N/AlxGa1-xN (0 ≤ x ≤ 0.1), which should be attributed to small optical confinement factor (OCF) or severe electron leakage. Therefore, a new violet LD structure with u-In0.02Ga0.98N/GaN/Al0.05Ga0.95N multiple layer UWG is proposed to reduce the optical loss and increase the barrier of EBL. Finally, the output light power under an injecting current of 120 mA is improved to 176.4 mW.

Keywords:  InGaN-based violet LDs      u-InGaN/GaN/AlGaN multiple upper waveguide  
Received:  03 August 2017      Revised:  31 August 2017      Accepted manuscript online: 
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.82.Et (Waveguides, couplers, and arrays)  
Fund: 

Project supported by the National Key R & D Program of China (Grant Nos. 2016YFB0400803 and 2016YFB0401801), the National Natural Science Foundation of China (Grant Nos. 61674138, 61674139, 61604145, 61574135, 61574134, 61474142, 61474110, 61377020, and 61376089), the Science Challenge Project, China (Grant No. TZ2016003), and the Beijing Municipal Science and Technology Project, China (Grant No. Z161100002116037).

Corresponding Authors:  De-Gang Zhao     E-mail:  dgzhao@red.semi.ac.cn

Cite this article: 

Feng Liang(梁锋), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Zong-Shun Liu(刘宗顺), Jian-Jun Zhu(朱建军), Ping Chen(陈平), Jing Yang(杨静), Wei Liu(刘炜), Shuang-Tao Liu(刘双韬), Yao Xing(邢瑶), Li-Qun Zhang(张立群), Wen-Jie Wang(王文杰), Mo Li(李沫), Yuan-Tao Zhang(张源涛), Guo-Tong Du(杜国同) Output light power of InGaN-based violet laser diodes improved by using a u-InGaN/GaN/AlGaN multiple upper waveguide 2017 Chin. Phys. B 26 124210

[1] Sizov D, Bhat R and Zah C E 2012 J. Lightwave Technol. 30 679
[2] Jiang L R, Liu J P, Tian A Q, Cheng Y, Li Z C, Zhang L Q, Zhang S M, Li D Y, Ikeda M and Yang H 2016 J. Semicond. 37 111001
[3] Lutgen S, Dini D, Pietzonka I, Tautz S, Breidenassel A, Lell A, Avramescu A, Eichler C, Lermer T, Müller J, Bruederl G, Gomez-Iglesias A, Strauss U, Scheibenzuber W G, Schwarz U T, Pasenow B and Koch S 2011 Proc. SPIE 7953 79530G
[4] Ren B, Hou Y and Liang Y N 2016 J. Semicond. 37 124001
[5] Zhao D G, Yang J, Liu Z S, Chen P, Zhu J J, Jiang D S, Shi Y S, Wang H, Duan L H, Zhang L Q and Yang H 2017 J. Semicond. 38 051001
[6] Strauss U, Somers A, Heine U, Wurm T, Peter M, Eichler C, Gerhard S, Bruederl G, Tautz S, Stojetz B, Loeffler A 2017 Koenig H Proc. SPIE 10123 101230A
[7] Alahyarizadeh G, AmirhoseinyM and Hassan Z 2016 Opt. Laser Technol. 76 106
[8] Perlin P, Holc K, Sarzyński M, Scheibenzuber W, Marona L, Czernecki R, Leszczyński M, Bockowski M, Grzegory I, Porowski S, Cywiński G, Firek P, Szmidt J, Schwarz U and Suski T 2009 Appl. Phys. Lett. 95 261108
[9] Stańczyk S, Czyszanowski T, Kafar A, Czernecki R, Targowski G, Leszczyński M, Suski T, Kucharski R and Perlin P 2013 Appl. Phys. Lett. 102 151102
[10] Nakamura S, Fasol G 1997 The blue laser diode (Berlin:Springer)
[11] Piprek J 2016 Opt. Quantum Electron. 48 471
[12] Shuji N, Masayuki S, Shin-ichi N, Naruhito I, Takao Y, Toshio M, Hiroyuki K, Yasunobu S, Tokuya K, Hitoshi U, Masahiko S, Kazuyuki C 1998 Jpn. J. Appl. Phys. 37 L627
[13] Zhao D G, Jiang D S, Le L C, Jing Y, Chen P, Liu Z Z, Zhu J J and Zhang L Q 2017 Chin. Phys. Lett. 34 017101
[14] Alahyarizadeh G, Hassan Z, Thahab S M, Ghazai A J and Mahmodi H 2012 NANOP 6 063514
[15] Li X, Zhao D G, Jiang D S, Chen P, Liu Z S, Zhu J J, Shi M, Zhao D M, Liu W, Zhang S M and Yang H 2015 J. Semicond. 36 074009
[16] Pang Y, Li X and Zhao B Q 2016 J. Semicond. 37 084007
[17] Fiorentini V, Bernardini F and Ambacher O 2002 Appl. Phys. Lett. 80 1204
[18] Hager T, Brüderl G, Lermer T, Tautz S, Gomez-Iglesias A, Müller J, Avramescu A, Eichler C, Gerhard S and Strauss U 2012 Appl. Phys. Lett. 101 171109
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Anti-symmetric sampled grating quantum cascade laser for mode selection
Qiangqiang Guo(郭强强), Jinchuan Zhang(张锦川), Fengmin Cheng(程凤敏), Ning Zhuo(卓宁), Shenqiang Zhai(翟慎强), Junqi Liu(刘俊岐), Lijun Wang(王利军),Shuman Liu(刘舒曼), and Fengqi Liu(刘峰奇). Chin. Phys. B, 2023, 32(3): 034209.
[3] Coupling characteristics of laterally coupled gratings with slots
Kun Tian(田锟), Yonggang Zou(邹永刚), Linlin Shi(石琳琳), He Zhang(张贺), Yingtian Xu(徐英添), Jie Fan(范杰), Hui Tang(唐慧), and Xiaohui Ma(马晓辉). Chin. Phys. B, 2022, 31(11): 114208.
[4] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[5] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[6] Lateral characteristics improvements of DBR laser diode with tapered Bragg grating
Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(9): 094204.
[7] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[8] Spatial and spectral filtering of tapered lasers by using tapered distributed Bragg reflector grating
Jing-Jing Yang(杨晶晶), Jie Fan(范杰), Yong-Gang Zou(邹永刚),Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(8): 084203.
[9] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[10] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[11] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[12] Broad gain, continuous-wave operation of InP-based quantum cascade laser at λ~11.8 μm
Huan Wang(王欢), Jin-Chuan Zhang(张锦川), Feng-Min Cheng(程凤敏), Zeng-Hui Gu(顾增辉), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Feng-Qi Liu(刘峰奇), Jun-Qi Liu(刘俊岐), Shu-Man Liu(刘舒曼), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(12): 124202.
[13] Tunable characteristic of phase-locked quantum cascade laser arrays
Zeng-Hui Gu(顾增辉), Jin-Chuan Zhang(张锦川), Huan Wang(王欢), Peng-Chang Yang(杨鹏昌), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Jun-Qi Liu(刘俊岐), Li-Jun Wang(王利军), Shu-Man Liu(刘舒曼), Feng-Qi Liu(刘峰奇), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(10): 104201.
[14] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[15] An approach to gas sensors based on tunable diode laser incomplete saturated absorption spectra
Wei Nie(聂伟), Zhen-Yu Xu(许振宇), Rui-Feng Kan(阚瑞峰), Mei-Rong Dong(董美蓉), and Ji-Dong Lu(陆继东). Chin. Phys. B, 2021, 30(6): 064213.
No Suggested Reading articles found!