Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 120505    DOI: 10.1088/1674-1056/26/12/120505
GENERAL Prev   Next  

Role of entropy generation minimization in thermal optimization

Xue-Tao Cheng(程雪涛)1,2, Xin-Gang Liang(梁新刚)1
1. Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, School of Aerospace, Tsinghua University, Beijing 100084, China;
2. The Administrative Committee of the Modern Industrial Park, New District of Zhengpu Port, Maanshan 238261, China
Abstract  Thermal optimization is very important for improving the performances of thermal systems. In engineering, the entropy generation minimization (EGM) has been widely used to optimize and evaluate the performances of thermal systems. However, the consistency between the EGM and the optimization objective should be specified when the EGM is used. In this paper, we discuss the view angle of irreversibility of entropy generation, and show that entropy generation directly reflects the exergy destruction or the ability loss of doing work. As the design objective in a thermal system is not often consistent with the view angle of irreversibility of entropy generation, the EGM may not lead to the optimal value of the design objective. In heat transfer and heat-work conversion, the inconsistence between the design objectives and the EGM is shown with some examples, and the applicability of the EGM is found to be conditional. The “entropy generation paradox” in heat exchanger analyses is also discussed, and it is shown that there is no direct monotonic relation between the minimum entropy generation rate and the best heat transfer performance of heat exchangers.
Keywords:  entropy generation      thermal analysis      heat transfer      heat-work conversion  
Received:  03 August 2017      Revised:  31 August 2017      Accepted manuscript online: 
PACS:  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  44.05.+e (Analytical and numerical techniques)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51376101) and the National Natural Science Fund for Creative Research Groups, China (Grant No. 51621062).
Corresponding Authors:  Xue-Tao Cheng     E-mail:  chengxt02@gmail.com

Cite this article: 

Xue-Tao Cheng(程雪涛), Xin-Gang Liang(梁新刚) Role of entropy generation minimization in thermal optimization 2017 Chin. Phys. B 26 120505

[1] Bergles A E 1981 Application of heat transfer augmentation (Washington DC:Hemisphere)
[2] Chen L G 2012 Chin. Sci. Bull. 57 4404
[3] Wei S H, Chen L G and Sun F R 2011 Int. J. Therm. Sci. 50 1285
[4] Cheng X T, Xu X H and Liang X G 2009 Sci. China Ser. E:Tech. Sci. 52 2937
[5] Sun C, Cheng X T and Liang X G 2014 Chin. Phys. B 23 050513
[6] Li M and Lai A C K 2013 Energy Convers. Maneg. 65 133
[7] Abbassi H 2007 Energy 32 1932
[8] Baytaș A C 2000 Int. J. Heat Mass Transfer 43 2089
[9] Bejan A 1997 Advanced engineering thermodynamics (NewYork:John Wiley & Sons)
[10] Klein S A and Reindl D T 1998 J. Energy Res. 120 172
[11] Cheng X T and Liang X G 2013 Energy Buildings 67 387
[12] Salamon P, Hoffmann K H, Schubert S, Berry R S and Andresen B 2001 J. Non-Equilib. Thermodyn. 26 73
[13] Shah R K and Skiepko T 2004 J. Heat Transfer 126 994
[14] Chen Q, Zhu H Y, Pan N and Guo Z Y 2011 P. Roy. Soc. A-Math. Phys. 467 1012
[15] Prigogine I 2007 From being to becoming (Beijing:Peking University Press) (in Chinese)
[16] Zhao K H and Luo W Y 2002 Thermotics (Beijing:Higher Education Press) (in Chinese)
[17] Cheng X T and Liang X G 2013 Energy Convers. Manag. 73 121
[18] Cheng X T, Zhang Q Z, Xu X H and Liang X G 2013 Chin. Phys. B 22 020503
[19] Guo Z Y, Zhu H Y and Liang X G 2007 Int. J. Heat Mass Transfer 50 2545
[20] Cheng X T and Liang X G 2012 Energy 44 964
[21] Cheng X T and Liang X G 2013 Chin. Sci. Bull. 58 4696
[22] Xu Y C and Chen Q 2012 Int. J. Heat Mass Transfer 55 5148
[23] Cheng X T and Liang X G 2013 Int. J. Heat Mass Transfer 64 903
[24] Cheng X T and Liang X G 2012 Energy 46 386
[25] Bejan A 2016 Renew. Sustain. Energy Rev. 53 1636
[26] Cheng X T and Liang X G 2012 Energy Convers. Manag. 58 163
[27] Guo Z Y, Liu X B, Tao W Q and Shah R K 2010 Int. J. Heat Mass Transfer 53 2877
[28] Hesselgreaves J E 2000 Int. J. Heat Mass Transfer 43 4189
[29] Xu Z M, Yang S R and Chen Z Q 1996 J. Thermal Sci. 5 257
[30] Sahiti N, Krasniqi F, Fejzullahu X, Bunjaku J and Muriqi A 2008 Appl. Thermal Eng. 28 2337
[31] Ogiso K 2003 ASME J. Heat Transfer 125 530
[32] Cheng X T and Liang X G 2012 Energy 47 421
[33] Cheng X T and Liang X G 2015 Chin. Phys. B 24 060510
[34] Wu Y Q 2015 Chin. Phys. B 24 070506
[35] Cheng X T and Liang X G 2013 Chin. Phys. B 22 010508
[36] Chen Q, Wu J, Wang M R, Pan N and Guo Z Y 2010 Chin. Sci. Bull. 56 449
[37] Wang W H, Cheng X T and Liang X G 2013 Chin. Phys. B 22 110506
[38] Wu Y Q, Cai L and Wu H J 2016 Chin. Phys. B 25 060506
[1] Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia
Yundong Tang(汤云东), Jian Zou(邹建), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(3): 034304.
[2] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[3] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[4] Accurate prediction of the critical heat flux for pool boiling on the heater substrate
Fengxun Hai(海丰勋), Wei Zhu(祝薇), Xiaoyi Yang(杨晓奕), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(6): 064401.
[5] Numerical simulation of anode heat transfer of nitrogen arc utilizing two-temperature chemical non-equilibrium model
Chong Niu(牛冲), Surong Sun(孙素蓉), Jianghong Sun(孙江宏), and Haixing Wang(王海兴). Chin. Phys. B, 2021, 30(9): 095206.
[6] Continuous droplet rebound on heated surfaces and its effects on heat transfer property: A lattice Boltzmann study
Qing-Yu Zhang(张庆宇), Qi-Peng Dong(董其鹏), Shan-Lin Wang(王山林), Zhi-Jun Wang(王志军), and Jian Zhou(周健). Chin. Phys. B, 2021, 30(4): 044703.
[7] Model predictive inverse method for recovering boundary conditions of two-dimensional ablation
Guang-Jun Wang(王广军), Ze-Hong Chen(陈泽弘), Guang-Xiang Zhang(章广祥), and Hong Chen(陈红). Chin. Phys. B, 2021, 30(3): 030203.
[8] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
[9] Effects of heat transfer in a growing particle layer on microstructural evolution during solidification of colloidal suspensions
Jia-Xue You(游家学), Yun-Han Zhang(张运涵), Zhi-Jun Wang(王志军), Jin-Cheng Wang(王锦程), and Sheng-Zhong Liu(刘生忠). Chin. Phys. B, 2021, 30(2): 028103.
[10] Lattice Boltzmann simulation on thermal performance of composite phase change material based on Voronoi models
Meng-Yue Guo(郭孟月), Qun Han(韩群), Xiang-Dong Liu(刘向东), and Bo Zhou(周博). Chin. Phys. B, 2021, 30(10): 104401.
[11] An efficient inverse approach for reconstructing time- and space-dependent heat flux of participating medium
Shuang-Cheng Sun(孙双成), Guang-Jun Wang(王广军), and Hong Chen(陈红)$. Chin. Phys. B, 2020, 29(11): 110202.
[12] Uniformity principle of temperature difference field in heat transfer optimization
Xue-Tao Cheng(程雪涛), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2019, 28(6): 064402.
[13] Heat transfer of liquid metal alloy on copper plate deposited with film of different surface free energy
Huilong Yan(闫慧龙), Jinliang Yan(闫金良), Gang Zhao(赵刚). Chin. Phys. B, 2019, 28(11): 114401.
[14] Thermal analysis of GaN-based laser diode mini-array
Jun-Jie Hu(胡俊杰), Shu-Ming Zhang(张书明), De-Yao Li(李德尧), Feng Zhang(张峰), Mei-Xin Feng(冯美鑫), Peng-Yan Wen(温鹏雁), Jian-Pin Liu(刘建平), Li-Qun Zhang(张立群), Hui Yang(杨辉). Chin. Phys. B, 2018, 27(9): 094208.
[15] Contribution of terahertz waves to near-field radiative heat transfer between graphene-based hyperbolic metamaterials
Qi-Mei Zhao(赵启梅), Tong-Biao Wang(王同标), De-Jian Zhang(张德建), Wen-Xing Liu(刘文兴), Tian-Bao Yu(于天宝), Qing-Hua Liao(廖清华), Nian-Hua Liu(刘念华). Chin. Phys. B, 2018, 27(9): 094401.
No Suggested Reading articles found!