Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 114212    DOI: 10.1088/1674-1056/26/11/114212
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Analysis of proton and γ-ray radiation effects on CMOS active pixel sensors

Lindong Ma(马林东)1,2,3, Yudong Li(李豫东)1,2, Qi Guo(郭旗)1,2, Lin Wen(文林)1,2, Dong Zhou(周东)1,2, Jie Feng(冯婕)1,2, Yuan Liu(刘元)1,2,3, Junzhe Zeng(曾骏哲)1,2,3, Xiang Zhang(张翔)1,2,3, Tianhui Wang(王田珲)1,2,3
1. Key Laboratory of Functional Materials and Devices for Special Environments of Chinese Academy of Sciences, Xinjiang Technical Institute of Physics & Chemistry, Urumqi 830011, China;
2. Xinjiang Key Laboratory of Electronic Information Material and Device, Urumqi 830011, China;
3. University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  

Radiation effects on complementary metal-oxide-semiconductor (CMOS) active pixel sensors (APS) induced by proton and γ-ray are presented. The samples are manufactured with the standards of 0.35 μm CMOS technology. Two samples have been irradiated un-biased by 23 MeV protons with fluences of 1.43×1011 protons/cm2 and 2.14×1011 protons/cm2, respectively, while another sample has been exposed un-biased to 65 krad(Si) 60Co γ-ray. The influences of radiation on the dark current, fixed-pattern noise under illumination, quantum efficiency, and conversion gain of the samples are investigated. The dark current, which increases drastically, is obtained by the theory based on thermal generation and the trap induced upon the irradiation. Both γ-ray and proton irradiation increase the non-uniformity of the signal, but the non-uniformity induced by protons is even worse. The degradation mechanisms of CMOS APS image sensors are analyzed, especially for the interaction induced by proton displacement damage and total ion dose (TID) damage.

Keywords:  complementary metal-oxide-semiconductor (CMOS) active pixel sensor      dark current      fixed-pattern noise      quantum efficiency  
Received:  08 May 2017      Revised:  03 July 2017      Accepted manuscript online: 
PACS:  42.88.+h (Environmental and radiation effects on optical elements, devices, and systems)  
  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  42.50.-p (Quantum optics)  
Fund: 

Project supported the National Natural Science Foundation of China (Grant No. 11675259), the West Light Foundation of the Chinese Academy of Sciences (Grant Nos. XBBS201316, 2016-QNXZ-B-2, and 2016-QNXZ-B-8), and Young Talent Training Project of Science and Technology, Xinjiang, China (Grant No. qn2015yx035).

Corresponding Authors:  Yudong Li     E-mail:  lydong@ms.xjb.ac.cn

Cite this article: 

Lindong Ma(马林东), Yudong Li(李豫东), Qi Guo(郭旗), Lin Wen(文林), Dong Zhou(周东), Jie Feng(冯婕), Yuan Liu(刘元), Junzhe Zeng(曾骏哲), Xiang Zhang(张翔), Tianhui Wang(王田珲) Analysis of proton and γ-ray radiation effects on CMOS active pixel sensors 2017 Chin. Phys. B 26 114212

[1] Padmakumar R R 2009 Charge-Transfer CMOS Image Sensors:Device and Radiation Aspects(Ph.D. dissertation)(Delft:Technische Universiteit Delft)
[2] James R S, Marty R S and Fleetwood D M 2008 IEEE Trans. Nucl. Sci. 55 1833
[3] Wang Z J, Chen W, Sheng J K, Liu Y, Xiao Z G, Huang S Y and Liu M B 2015 AIP Advances 5 027128
[4] Wang Z J, Huang S Y, Liu M B, Xiao Z G, He B P, Yao Z B and Sheng J K 2014 AIP Advances 4 077108
[5] Wang Z J, Guo H X, Zhang W S, Luo T D, Huang S Y, Tang B Q and Jin J S 2014 AIP Advances 4 097132
[6] Jan B, Bart D and Mertens R 2002 IEEE Trans. Nucl. Sci. 49 1513
[7] Jan B, Bart D, Guy M and Dirk U 2003 IEEE Trans on Electron Devices 50 84
[8] Jan B and Bart D 2000 Proc. SPIE 3965 2000
[9] Vincent G, Magali E and Pierre M 2003 IEEE Trans. Nucl. Sci. 50 11
[10] Cedric V and Vincent G 2010 IEEE Trans. Nucl. Sci. 57 6
[11] Cedric V, Vincent G and Pierre M 2012 IEEE Trans. Nucl. Sci. 59 927
[12] Standard for Characterization of Image Sensors and Cameras, 2010 EMVA Standard 12882010
[13] Goiffon V, Estribeau M and Magnan P 2009 IEEE Transactions on Electron Devices 56 2594
[14] Vincent G, Magali E and Olivier M 2012 IEEE Trans. Nucl. Sci. 59 2878
[15] Wang F, Li Y D, Guo Q, Wang B, Zhang X Y, Wen L and He C F 2016 Acta Phys. Sin. 65 024212(in Chinese)
[16] Chen P X 2005 Radiation Effects on Semiconductor Devices and Integrated Circuits(Beijing:National Defense Industry Press) pp. 95-99
[17] Hopkinson G R and Mohammadzadeh A 2004 International Journal of High Speed Electronics and Systems 14 419
[18] WANG X Y 2008 Noise in Sub-Micron CMOS Image Sensors(Ph.D dissertation)(Delft:Technische Universiteit Delft)
[19] Wang Z J, He B P, Yao Z B, Liu M B and Sheng J K 2014 IEEE Trans. Nucl. Sci. 61 1376
[20] Schwank J R, Fleetwood D M, Shaneyfelt M R, Winokur P S, Axness C L and Riewe L C 1992 IEEE Trans. Nucl. Sci. 39 1953
[21] Srour J R and Palko J W 2013 IEEE Trans. Nucl. Sci. 60 3
[22] Jin J, Li Y, Zhang Z C, Wu C X and Song N F 2016 Chin. Phys. B 25 084213
[23] Hopkinson G R, Dale C J and Marshall P W 1996 IEEE Trans. Nucl. Sci. 43 614
[24] Cao C, Zhang B, Wu L S, Li N and Wang J F 2014 Chin. Phys. B 23 124215
[1] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
[2] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[3] Optical polarization characteristics for AlGaN-based light-emitting diodes with AlGaN multilayer structure as well layer
Lu Xue(薛露), Yi Li(李毅), Mei Ge(葛梅), Mei-Yu Wang(王美玉), and You-Hua Zhu(朱友华). Chin. Phys. B, 2021, 30(4): 047802.
[4] Effect of AlGaN interlayer on luminous efficiency and reliability of GaN-based green LEDs on silicon substrate
Jiao-Xin Guo(郭娇欣), Jie Ding(丁杰), Chun-Lan Mo(莫春兰), Chang-Da Zheng(郑畅达), Shuan Pan(潘拴), Feng-Yi Jiang(江风益). Chin. Phys. B, 2020, 29(4): 047303.
[5] Infrared light-emitting diodes based on colloidal PbSe/PbS core/shell nanocrystals
Byung-Ryool Hyun, Mikita Marus, Huaying Zhong(钟华英), Depeng Li(李德鹏), Haochen Liu(刘皓宸), Yue Xie(谢阅), Weon-kyu Koh, Bing Xu(徐冰), Yanjun Liu(刘言军), Xiao Wei Sun(孙小卫). Chin. Phys. B, 2020, 29(1): 018503.
[6] Enhanced performance of AlGaN-based ultraviolet light-emitting diodes with linearly graded AlGaN inserting layer in electron blocking layer
Guang Li(李光), Lin-Yuan Wang(王林媛), Wei-Dong Song(宋伟东), Jian Jiang(姜健), Xing-Jun Luo(罗幸君), Jia-Qi Guo(郭佳琦), Long-Fei He(贺龙飞), Kang Zhang(张康), Qi-Bao Wu(吴启保), Shu-Ti Li(李述体). Chin. Phys. B, 2019, 28(5): 058502.
[7] InP quantum dots-based electroluminescent devices
Qianqian Wu(吴倩倩), Fan Cao(曹璠), Lingmei Kong(孔令媚), Xuyong Yang(杨绪勇). Chin. Phys. B, 2019, 28(11): 118103.
[8] Scalability of dark current in silicon PIN photodiode
Ya-Jie Feng(丰亚洁), Chong Li(李冲), Qiao-Li Liu(刘巧莉), Hua-Qiang Wang(王华强), An-Qi Hu(胡安琪), Xiao-Ying He(何晓颖), Xia Guo(郭霞). Chin. Phys. B, 2018, 27(4): 048501.
[9] Total ionizing dose effects in pinned photodiode complementary metal-oxide-semiconductor transistor active pixel sensor
Lin-Dong Ma(马林东), Yu-Dong Li(李豫东), Lin Wen(文林), Jie Feng(冯婕), Xiang Zhang(张翔), Tian-Hui Wang(王田珲), Yu-Long Cai(蔡毓龙), Zhi-Ming Wang(王志铭), Qi Guo(郭旗). Chin. Phys. B, 2018, 27(10): 104207.
[10] Comparison of blue-green response between transmission-mode GaAsP-and GaAs-based photocathodes grown by molecular beam epitaxy
Gang-Cheng Jiao(焦岗成), Zheng-Tang Liu(刘正堂), Hui Guo(郭晖), Yi-Jun Zhang(张益军). Chin. Phys. B, 2016, 25(4): 048505.
[11] Current spreading in GaN-based light-emitting diodes
Qiang Li(李强), Yufeng Li(李虞锋), Minyan Zhang(张敏妍), Wen Ding(丁文), Feng Yun(云峰). Chin. Phys. B, 2016, 25(11): 117102.
[12] Effect of chloride introduction on the optical properties in Eu3+-doped fluorozirconate glasses
Han Jin(金含), Zhao-Jun Mo(莫兆军), Xiao-Song Zhang(张晓松), Lin-Lin Yuan(苑琳琳), Ming Yan(晏明), Lan Li(李岚). Chin. Phys. B, 2016, 25(10): 103201.
[13] Effects of polarization and p-type GaN resistivity on the spectral response of InGaN/GaN multiple quantum well solar cells
Yang Jing (杨静), Zhao De-Gang (赵德刚), Jiang De-Sheng (江德生), Liu Zong-Shun (刘宗顺), Chen Ping (陈平), Li Liang (李亮), Wu Liang-Liang (吴亮亮), Le Ling-Cong (乐伶聪), Li Xiao-Jing (李晓静), He Xiao-Guang (何晓光), Wang Hui (王辉), Zhu Jian-Jun (朱建军), Zhang Shu-Ming (张书明), Zhang Bao-Shun (张宝顺), Yang Hui (杨辉). Chin. Phys. B, 2014, 23(6): 068801.
[14] A quantum efficiency analytical model for complementary metal–oxide–semiconductor image pixels with a pinned photodiode structure
Cao Chen (曹琛), Zhang Bing (张冰), Wu Long-Sheng (吴龙胜), Li Na (李娜), Wang Jun-Feng (王俊峰). Chin. Phys. B, 2014, 23(12): 124215.
[15] The enhancement of light-emitting efficiency using GaN-based multiple quantum well light-emitting diodes with nanopillar arrays
Wan Tu-Tu (万图图), Ye Zhan-Qi (叶展圻), Tao Tao (陶涛), Xie Zi-Li (谢自力), Zhang Rong (张荣), Liu Bin (刘斌), Xiu Xiang-Qian (修向前), Li Yi (李毅), Han Ping (韩平), Shi Yi (施毅), Zheng You-Dou (郑有炓). Chin. Phys. B, 2013, 22(8): 088102.
No Suggested Reading articles found!