Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 104402    DOI: 10.1088/1674-1056/26/10/104402
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Simulation on effect of metal/graphene hybrid transparent electrode on characteristics of GaN light emitting diodes

Ming-Can Qian(钱明灿)1, Shu-Fang Zhang(张淑芳)2, Hai-Jun Luo(罗海军)1,3, Xing-Ming Long(龙兴明)3, Fang Wu(吴芳)1, Liang Fang(方亮)1, Da-Peng Wei(魏大鹏)4, Fan-Ming Meng(孟凡明)1, Bao-Shan Hu(胡宝山)5
1. State Key Laboratory of Mechanical Transmission, College of Physics, Chongqing University, Chongqing 400044, China;
2. College of Software, Chongqing College of Electronic Engineering, Chongqing 401331, China;
3. College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 400047, China;
4. Chongqing Engineering Research Center of Graphene Film Manufacturing, Chongqing 401331, China;
5. College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
Abstract  In order to decrease the Schottky barrier height and sheet resistance between graphene (Gr) and the p-GaN layers in GaN-based light-emitting diodes (LEDs), some transparent thin films with good conductivity and large work function are essential to insert into Gr and p-GaN layers. In this work, the ultra-thin films of four metals (silver (Ag), golden (Au), nickel (Ni), platinum (Pt)) are explored to introduce as a bridge layer into Gr and p-GaN, respectively. The effect of a different combination of Gr/metal transparent conductive layers (TCLs) on the electrical, optical, and thermal characteristics of LED was investigated by the finite element methods. It is found that both the TCLs transmittance and the surface temperature of the LED chip reduces with the increase of the metal thickness, and the transmittance decreases to about 80% with the metal thickness increasing to 2 nm. The surface temperature distribution, operation voltage, and optical output power of the LED chips with different metal/Gr combination were calculated and analyzed. Based on the electrical, optical, and thermal performance of LEDs, it is found that 1.5-nm Ag or Ni or Pt, but 1-nm Au combined with 3 layered (L) Gr is the optimal Gr/metal hybrid transparent and current spreading electrode for ultra-violet (UV) or near-UV LEDs.
Keywords:  finite element methods      graphene      temperature distribution      transmittance      light-emitting diodes  
Received:  19 February 2017      Revised:  06 April 2017      Accepted manuscript online: 
PACS:  44.05.+e (Analytical and numerical techniques)  
  44.90.+c (Other topics in heat transfer)  
Fund: Project supported by the National High-Technology Research and Development Program of China (Grant No. 2015AA034801), the Foundation of the State Key Laboratory of Mechanical Transmission of Chongqing University (Grant Nos. SKLMT-ZZKT-2017M15, SKLM-ZZKT-2015Z16, and SKLMT-KFKT-201419), the National Natural Science Foundation of China (Grant Nos. 11374359, 11304405, and 11544010), the Natural Science Foundation of Chongqing (Grant Nos. cstc2015jcyjA50035 and cstc2015jcyjA1660), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 106112017CDJQJ328839, 106112014CDJZR14300050, 106112016CDJZR288805, and 106112015CDJXY300002), and the Sharing Fund of Large-scale Equipment of Chongqing University (Grant Nos. 201606150016, 201606150017, and 201606150056).
Corresponding Authors:  Shu-Fang Zhang, Hai-Jun Luo, Liang Fang     E-mail:  roseymcn2000@foxmail.com;lhj19830330@126.com;lfang@cqu.edu.cn

Cite this article: 

Ming-Can Qian(钱明灿), Shu-Fang Zhang(张淑芳), Hai-Jun Luo(罗海军), Xing-Ming Long(龙兴明), Fang Wu(吴芳), Liang Fang(方亮), Da-Peng Wei(魏大鹏), Fan-Ming Meng(孟凡明), Bao-Shan Hu(胡宝山) Simulation on effect of metal/graphene hybrid transparent electrode on characteristics of GaN light emitting diodes 2017 Chin. Phys. B 26 104402

[1] Zhang Y, Li X, Wang L, et al. 2012 Nanoscale 4 5852
[2] Krames M R, Shchekin O B, Mueller-Mach R, et al. 2007 J. Disp. Technol. 3 160
[3] Schubert, Fred E and Kim J K 2005 Science 308 1274
[4] Li Z W, Hu Y H, Li Y, et al. 2017 Chin. Phys. B 26 036802
[5] Wang X, Zhi L and Müllen K 2008 Nano Lett. 8 323
[6] Ahmad A, Asghar S and Alsaedi A 2014 Chin. Phys. B 23 074401
[7] Seo T H, Kim B K, Shin G U, et al. 2013 Appl. Phys. Lett. 103 051105
[8] Pang S, Hernandez Y, Feng X, et al. 2011 Adv. Mater. 23 2779
[9] Momeni D and Myrzakulov R 2015 Chin. Phys. Lett. 32 047401
[10] Li X S, Zhu Y W, Cai W W, et al. 2009 Nano Lett. 9 4359
[11] Chandramohan1 S, Kang J H, Katharria1 Y S, et al. 2012 Appl. Phys. Lett. 100 023502
[12] Lee J M, Jeong H, Choi Y K J, et al. 2011 Appl. Phys. Lett. 99 041115
[13] Seo T H, Chae S J, Kim B K, et al. 2012 Appl. Phys. Express 5 115101
[14] Lin Y C, Chang S J, Su Y K, et al. 2002 IEEE Photon. Tech. Lett. 14 1668
[15] Niu C Y, Qi H, Huang X, et al. 2015 Chin. Phys. B. 24 114401
[16] Kim B J, Yang G, Kim H Y, et al. 2013 Opt. Express 21 29025
[17] Seo T H, Shin G U, Kim B K, et al. 2013 J. Appl. Phys. 114 223105
[18] Wang L, Zhang Z H and Wang N 2015 IEEE J. Quantum Electron. 51 1
[19] Ryu J H, Choi D H and Kim S J 2002 Int. J. Heat Mass Transfer 45 2823
[20] Han J Q and Liu Q S 2013 Chin. Phys. Lett. 30 054301
[21] Sheu G J, Hwu F S, Chen J C, et al. 2008 J. Electrochem. Soc. 155 H836
[22] Hwu F S, Chen J C, Tu S H, et al. 2010 J. Electrochem. Soc. 157 H31
[23] Xue S J, Fang L, Long X M, et al. 2014 Chin. Phys. Lett. 31 028501
[24] Nirmalraj P N, Lutz T, Kumar S, et al. 2010 Nano Lett. 11 16
[25] Chen H, Kou X, Yang Z, et al. 2008 Langmuir. 24 5233
[26] McFarland A D and Van Duyne R P 2003 Nano Lett. 3 1057
[27] Yakuphanoglu F, Durmusş M, Okutan M, et al. 2006 Physica B 373 262
[28] Xu H Y and Jiang X Y 2015 Chin. Phys. B 24 034401
[29] Kim J S, Yang S C and Bae B S 2010 Chem. Mater. 22 3549
[30] Horng R H, Lin R C, Chiang Y C, et al. 2012 Microelectron. Reliab. 52 818
[31] Liu L B, Tao C, Liu X J, et al. 2015 Chin. Phys. B 24 024304
[32] Zhang G C, Feng S W, Zhou Z, et al. 2011 Chin. Phys. B 20 027202
[33] Yan Q X, Zhang S F, Long X M, et al. 2016 Chin. Phys. Lett. 33 078501
[34] Oh M, Jin W Y, Jeong H J, et al. 2015 Sci. Rep. 5 13483
[35] Liu Z Q, Wei T B, Guo E Q, et al. 2011 Appl. Phys. Lett. 99 091104
[36] Müller E, Gerthsen D, Brückner P, et al. 2006 Phys. Rev. B 73 245316
[37] Xu J, Schubert M F, Zhu D, et al. 2011 Appl. Phys. Lett. 99 041105
[38] Wu L J, Li S T, Liu C, et al. 2012 Chin. Phys. B 21 068506
[39] Ryou J H, Yoder P D, Liu J, et al. 2009 IEEE J. Sel. Top. Quantum Electron. 15 1080
[40] Laubsch A, Sabathil M, Baur J, et al. 2010 IEEE T. Electron. Dev. 57 79
[41] Meyaard D S, Shan Q, Cho J, et al. 2012 Appl. Phys. Lett. 100 081106
[42] Malyutenko V K, Bolgov S S and Podoltsev A D 2010 Appl. Phys. Lett. 97 251110
[43] Li X, Zhu Y, Cai W, et al. 2009 Nano Lett. 9 4359
[44] Yu H J, Dong Y, Kim T S, et al. 2015 J. Korean Phys. Soc. 67 346
[45] Park C H, Bonini N, Sohier T, et al. 2014 Nano Lett. 14 1113
[46] Hibbard D L, Jung S P, Wang C, et al. 2003 Appl. Phys. Lett. 83 311
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[6] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[7] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[8] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[11] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[12] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[13] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[14] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[15] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
No Suggested Reading articles found!