Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 098504    DOI: 10.1088/1674-1056/26/9/098504
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Intrinsic relationship between photoluminescence and electrical characteristics in modulation Fe-doped AlGaN/GaN HEMTs

Jianfei Li(李建飞)1,2, Yuanjie Lv(吕元杰)2, Changfu Li(李长富)1, Ziwu Ji(冀子武)1, Zhiyong Pang(庞智勇)1, Xiangang Xu(徐现刚)3, Mingsheng Xu(徐明升)4
1 School of Microelectronics, Shandong University, Jinan 250100, China;
2 National Key Laboratory of Application Specific Integrated Circuit (ASIC), Hebei Semiconductor Research Institute, Shijiazhuang 050051, China;
3 Key Laboratory of Functional Crystal Materials and Device (Ministry of Education), Shandong University, Jinan 250100, China;
4 School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
Abstract  The photoluminescence (PL) and electrical properties of AlGaN/GaN high electron mobility transistors (HEMTs) with different Fe doping concentrations in the GaN buffer layers were studied. It was found that, at low Fe doping concentrations, the introduction of Fe atoms can result in a downward shift of the Fermi level in the GaN buffer layer, since the Fe atoms substitute Ga and introduce an FeGa3+/2+ acceptor level. This results in a decrease in the yellow luminescence (YL) emission intensity accompanied by the appearance of an infrared (IR) emission, and a decrease in the off-state buffer leakage current (BLC). However, a further increase in the Fe doping concentration will conversely result in the upward shift of the Fermi level due to the incorporation of O donors under the large flow rate of the Fe source. This results in an increased YL emission intensity accompanied by a decrease in the IR emission intensity, and an increase in the BLC. The intrinsic relationship between the PL and BLC characteristics is expected to provide a simple and effective method to understand the variation of the electrical characteristic in the modulation Fe-doped HEMTs by optical measurements.
Keywords:  AlGaN/GaN HEMT      Fe-doping      photoluminescence      leakage current  
Received:  02 December 2016      Revised:  06 May 2017      Accepted manuscript online: 
PACS:  85.30.Tv (Field effect devices)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  78.55.-m (Photoluminescence, properties and materials)  
  73.90.+f (Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)  
Fund: Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91433112), the National Natural Science Foundation of China (Grant No. 51672163), and the Key Laboratory of Functional Crystal Materials and Device (Shandong University, Ministry of Education), China (Grant No. JG1401).
Corresponding Authors:  Ziwu Ji     E-mail:  jiziwu@sdu.edu.cn

Cite this article: 

Jianfei Li(李建飞), Yuanjie Lv(吕元杰), Changfu Li(李长富), Ziwu Ji(冀子武), Zhiyong Pang(庞智勇), Xiangang Xu(徐现刚), Mingsheng Xu(徐明升) Intrinsic relationship between photoluminescence and electrical characteristics in modulation Fe-doped AlGaN/GaN HEMTs 2017 Chin. Phys. B 26 098504

[1] Marti D, Tirelli S, Alt A R, Roberts J and Bolognesi C R 2012 IEEE Electron Device Lett. 33 1372
[2] He Y L, Wang C, Mi M H, Zheng X F, Zhang M, Zhao M D, Zhang H S, Chen L X, Zhang J C, Ma X H and Hao Y 2016 Chin. Phys. B 25 117305
[3] Wang L, Zhang J Q, Li L, Maeda Y and Ao J P 2017 Chin. Phys. B 26 037201
[4] Moore W J, Freitas Jr J A, Braga G C B, Molnar R J, Lee S K, Lee K Y and Song I J 2001 Appl. Phys. Lett. 79 2570
[5] Ravikiran L, Radhakrishnan K, Munawar Basha S, Dharmarasu N, Agrawal M, Manoj kumar C M, Arulkumaran S and Ng G I 2015 J. Appl. Phys. 117 245305
[6] Hwang C Y, Schurman M J, Mayo W E, Lu Y C, Stall R A and Salagaj T 1997 J. Electron. Mater. 26 243
[7] Monemar B and Lagerstedt O 1979 J. Appl. Phys. 50 6480
[8] Li M, Wang Y, Wong K M and Lau K M 2014 Chin. Phys. B 23 038403
[9] Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Mishra U K and Parikh P 2004 IEEE Electron Device Lett. 25 117
[10] Kubota M, Onuma T, Ishihara Y, Usui A, Uedono A and Chichibu S F 2009 J. Appl. Phys. 105 083542
[11] Desmaris V, Rudziñski M, Rorsman N, Hageman P R, Larsen P K, Zirath H, Rödle T C and Jos H F F 2006 IEEE Tran. Eelectron Dev. 53 2413
[12] Dumcenco D O, Levcenco S, Huang Y S, Reynolds Jr C L, Reynolds J G, Tiong K K, Paskova T and Evans K R 2011 J. Appl. Phys. 109 123508
[13] Gladkov P, Hulicius E, Paskova T, Preble E and Evans K R 2012 Appl. Phys. Lett. 100 031908
[14] Axelsson O, Gustafsson S, Hjelmgren H, Rorsman N, Blanck H, Splettstoesser J, Thorpe J, Roedle T and Thorsell M 2016 IEEE Tran. Eelectron Dev. 63 326
[15] Bergman J P, Lundström T, Monemar B, Amano H and Akasaki I 1996 Appl. Phys. Lett. 69 3456
[16] Reshchikov M A and Morkoç H 2005 J. Appl. Phys. 97 061301
[17] Wegscheider M, Simbrunner C, Przybylińska H, Kiecana M, Sawicki M, Navarro-Quezada A, Sitter H, Jantsch W, Dietl T and Bonanni A 2007 Phys. Status Solidi A 204 86
[18] Bonanni A, Kiecana M, Simbrunner C, Li T, Sawicki M, Wegscheider M, Quast M, Przybylińska H, Navarro-Quezada A, Jakiela R, Wolos A, Jantsch W and Dietl T 2007 Phys. Rev. B 75 125210
[19] Smorchkova I P, Chen L, Mates T, Shen L, Heikman S, Moran B, Keller S, DenBaars S P, Speck J S and Mishra U K 2001 J. Appl. Phys. 90 5196
[20] Cao Y and Jena D 2007 Appl. Phys. Lett. 90 182112
[21] Deen D A, Storm D F, Meyer D J, Bass R, Binari S C, Gougousi T and Evans K R 2014 Appl. Phys. Lett. 105 093503
[22] Cordier Y, Azize M, Baron N, Chenot S, Tottereau O and Massies J 2007 J. Cryst. Growth 309 1
[23] Cordier Y, Azize M, Baron N, Bougrioua Z, Chenot S, Tottereau O, Massies J and Gibart P 2008 J. Cryst. Growth 310 948
[24] Lee J, Liu D, Kim H, Schuette M, Flynn J S, Brandes G R and Lu W 2004 Electron. Lett. 40 1227
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[4] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[5] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[6] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[7] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[8] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[9] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[10] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[11] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[12] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[13] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[14] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[15] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
No Suggested Reading articles found!