Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 084202    DOI: 10.1088/1674-1056/26/8/084202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Resonantly driven exciton Rabi oscillation in single quantum dots emitting at 1300 nm

Yong-Zhou Xue(薛永洲)1,2, Ze-Sheng Chen(陈泽升)1, Hai-Qiao Ni(倪海桥)1, Zhi-Chuan Niu(牛智川)1, De-Sheng Jiang(江德生)1, Xiu-Ming Dou(窦秀明)1,2, Bao-Quan Sun(孙宝权)1,2
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

We report on the resonance fluorescence (RF) from single InAs quantum dots (QDs) emitting at the telecom band of 1300 nm. The InAs/GaAs QDs are embedded in a planar optical microcavity and the RF is measured by an orthogonal excitation-detection geometry for deeply suppressing the residual laser scattering. An ultra-weak He-Ne laser is necessary to be used as a gate laser for obtaining RF. Rabi oscillation with more than one period is observed through the picosecond (ps) pulsed laser excitation. The resonant control of exciton opens up new possibilities for realizing the on-demand single photon emission and quantum manipulation of solid-state qubits at telecom band.

Keywords:  quantum dots      resonance fluorescence      single photons      Rabi oscillation  
Received:  06 February 2017      Revised:  06 April 2017      Accepted manuscript online: 
PACS:  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  78.55.Cr (III-V semiconductors)  
  78.67.Hc (Quantum dots)  
Fund: 

Project supported by the National Basic Research Program, China (Grant No. 2013CB922304), the National Key Research and Development Program of China (Grant No. 2016YFA0301202), and the National Natural Science Foundation of China (Grant Nos. 11474275, 61674135, and 91536101).

Corresponding Authors:  Xiu-Ming Dou, Bao-Quan Sun     E-mail:  xmdou04@semi.ac.cn;bqsun@semi.ac.cn
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Yong-Zhou Xue(薛永洲), Ze-Sheng Chen(陈泽升), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川), De-Sheng Jiang(江德生), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权) Resonantly driven exciton Rabi oscillation in single quantum dots emitting at 1300 nm 2017 Chin. Phys. B 26 084202

[1] Brahim L and Michel O 2005 Rep. Prog. Phys. 68 1129
[2] Charles S, David F, Jelena V, Glenn S S and Yoshihisa Y 2004 New J. Phys. 6 89
[3] Wu X F, Dou X M, Ding K, Zhou P Y, Ni H Q, Niu Z C, Jiang D S and Sun B Q 2013 Appl. Phys. Lett. 103 252108
[4] Patel R B, Bennett A J, Farrer I, Nicoll C A, Ritchie D A and Shields A J 2010 Nat. Photon. 4 632
[5] Ding X, He Y, Duan Z C, Gregersen N, Chen M C, Unsleber S, Maier S, Schneider C, Kamp M, Höfling S, Lu C Y and Pan J W 2016 Phys. Rev. Lett. 116 020401
[6] Holmes M J, Kako S, Choi K, Arita M and Arakawa Y 2016 ACS Photon. 3 543
[7] Liu X, Akahane K, Jahan N A, Kobayashi N, Sasaki M, Kumano H and Suemune I 2013 Appl. Phys. Lett. 103 061114
[8] Paul M, Kettler J, Zeuner K, Clausen C, Jetter M and Michler P 2015 Appl. Phys. Lett. 106 122105
[9] Monniello L, Reigue A, Hostein R, Lemaitre A, Martinez A, Grousson R and Voliotis V 2014 Phys. Rev. B 90 041303
[10] Al-Khuzheyri R, Dada A C, Huwer J, Santana T S, Skiba-Szymanska J, Felle M, Ward M B, Stevenson R M, Farrer I, Tanner M G, Hadfield R H, Ritchie D A, Shields A J and Gerardot B D 2016 Appl. Phys. Lett. 109 163104
[11] Muller A, Flagg E B, Bianucci P, Wang X Y, Deppe D G, Ma W, Zhang J, Salamo G J, Xiao M and Shih C K 2007 Phys. Rev. Lett. 99 187402
[12] Dou X M, Yu Y, Sun B Q, Jiang D S, Ni H Q and Niu Z C 2012 Chin. Phys. Lett. 29 104203
[13] Qiao N, Chen Z H, Yang Y B, Liu S D, Wang Y C and Ye H 2016 IEEE Photon. J. 8 2
[14] Cao S and Xu X L 2014 Physics 43 740 (in Chinese)
[15] Nguyen H S, Sallen G, Voisin C, Roussignol P, Diederichs C and Cassabois G 2012 Phys. Rev. Lett. 108 057401
[16] Chen Z S, Ma B, Shang X J, He Y, Zhang L C, Ni H Q, Wang J L and Niu Z C 2016 Nanoscale Res. Lett. 11 382
[17] Ramsay A J, Gopal A V, Gauger E M, Nazir A, Lovett B W, Fox A M and Skolnick M S 2010 Phys. Rev. Lett. 104 017402
[18] Nguyen H S, Sallen G, Abbarchi M, Ferreira R, Voisin C, Roussignol P, Cassabois G and Diederichs C 2013 Phys. Rev. B 87 115305
[19] Nguyen H S, Sallen G, Voisin C, Roussignol P, Diederichs C and Cassabois G 2011 Appl. Phys. Lett. 99 261904
[20] Monniello L, Tonin C, Hostein R, Lemaitre A, Martinez A, Voliotis V and Grousson R 2013 Phys. Rev. Lett. 111 026403
[21] Melet R, Voliotis V, Enderlin A, Roditchev D, Wang X L, Guillet T and Grousson R 2008 Phys. Rev. B 78 073301
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[5] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[6] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[7] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[8] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[9] Efficient quantum private comparison protocol utilizing single photons and rotational encryption
Tian-Yi Kou(寇天翊), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(6): 060307.
[10] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[11] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[12] Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer
Junhui Huang(黄君辉), Hao Chen(陈昊), Zhiyao Zhuo(卓志瑶), Jian Wang(王健), Shulun Li(李叔伦), Kun Ding(丁琨), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Desheng Jiang(江德生), Xiuming Dou(窦秀明), and Baoquan Sun(孙宝权). Chin. Phys. B, 2021, 30(9): 097805.
[13] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[14] Phase- and spin-dependent manipulation of leakage of Majorana mode into double quantum dot
Fu-Bin Yang(羊富彬), Gan Ren(任淦), and Lin-Guo Xie(谢林果). Chin. Phys. B, 2021, 30(7): 078505.
[15] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
No Suggested Reading articles found!