Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 085203    DOI: 10.1088/1674-1056/26/8/085203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Surface enhancement of molecular ion H2+ yield in a 2.45-GHz electron-cyclotron resonance ion source

Yuan Xu(徐源)1, Shi-Xiang Peng(彭士香)1, Hai-Tao Ren(任海涛)1, Ai-Lin Zhang(张艾霖)1,2, Tao Zhang(张滔)1, Jing-Feng Zhang(张景丰)1, Jia-Mei Wen(温佳美)1, Wen-Bin Wu(武文斌)1, Zhi-Yu Guo(郭之虞)1, Jia-Er Chen(陈佳洱)1,2
1 State Key Laboratory of Nuclear Physics and Technology & Institute of Heavy Ion Physics, Peking University, Beijing 100871, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

High current hydrogen molecular ion beam is obtained with a specially designed stainless steel liner permanent magnet 2.45-GHz electron-cyclotron resonance (ECR) ion source (PMECR II) at Peking University (PKU). To further understand the physics of the hydrogen generation process inside a plasma chamber, theoretical and experimental investigations on the liner material of the plasma chamber in different running conditions are carried out. Several kinds of materials, stainless steel (SS), tantalum (Ta), quartz, and aluminum (Al) are selected in our study. Experimental results show that stainless steel and tantalum are much better than others in H2+ generation. During the experiment, an increasing trend in H2+ fraction is observed with stainless steel liner after O2 discharge inside the ion source. Surface analyses show that the roughness change on the surface after O2 discharge may be responsible for this phenomenon. After these studies, the pure current of H2+ ions can reach 42.3 mA with a fraction of 52.9%. More details are presented in this paper.

Keywords:  H2+ ion source      ECR      40 mA      plasma  
Received:  28 February 2017      Revised:  02 May 2017      Accepted manuscript online: 
PACS:  52.50.Dg (Plasma sources)  
  52.50.Sw (Plasma heating by microwaves; ECR, LH, collisional heating)  
  52.40.Hf (Plasma-material interactions; boundary layer effects)  
  52.59.-f (Intense particle beams and radiation sources)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11175009 and 11575013).

Corresponding Authors:  Shi-Xiang Peng     E-mail:  sxpeng@pku.edu.cn
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Yuan Xu(徐源), Shi-Xiang Peng(彭士香), Hai-Tao Ren(任海涛), Ai-Lin Zhang(张艾霖), Tao Zhang(张滔), Jing-Feng Zhang(张景丰), Jia-Mei Wen(温佳美), Wen-Bin Wu(武文斌), Zhi-Yu Guo(郭之虞), Jia-Er Chen(陈佳洱) Surface enhancement of molecular ion H2+ yield in a 2.45-GHz electron-cyclotron resonance ion source 2017 Chin. Phys. B 26 085203

[1] Calabretta L, Maggiore M, Piazza L A C, Rifuggiato D and Calanna A 2010 in Proceedings of Cyclotrons 2010 TUA1CIO01, Lanzhou, China, p. 298
[2] Junquera T 2008 Proceedings of LINAC08, TU102, Victoria, BC, Canada, p. 348
[3] Nagler A, Berkovits D, Gertz I, Mardor I, Rodnizki J, Weissman L, Dunkel K, Kremer F, Pekeler M, Piel C and Stein Vom P 2006 in Proceedings of LINAC 2006, MOP054, Knoxville, Tennessee, USA, p. 168
[4] Gobin R, Blideanu V, Bogard D, Bourdelle G, Chauvin N, Delferriére O, Girardot P, Jannin J L, Langlois S, Loiseau D, Pottin B, Rousse J Y and Senée F 2010 Rev. Sci. Instrum. 81 02B301
[5] Peng S X, Song Z Z, Yu J X, Ren H T, Zhang M, Yuan Z X, Lu P N, Zhao J, Chen J E, Guo Z Y and Lu Y R 2010 in Proceedings of ECRIS10, TUCOCK02, Grenoble, France, p. 102
[6] Ren H T, Peng S X, Xu Y, Zhao J, Chen J, Zhang T, Zhang A L, Guo Z Y and Chen J E 2013 Sci. China-Phys. Mech. Astron. 56 2016
[7] Xu Y, Peng S X, Ren H T, Zhao J, Chen J, Zhang A L, Zhang T, Guo Z Y and Chen J E 2014 Rev. Sci. Instrum. 85 02A943
[8] Waldmann O and Ludewigt B 2011 Rev. Sci. Instrum. 82 113505
[9] Jung B K, Chung K J, Dang J J and Hwang Y S 2012 Rev. Sci. Instrum. 83 02B314
[10] Xu Y, Peng S X, Ren H T, Zhao J, Chen J, Zhang T, Zhang J F, Guo Z Y and Chen J E 2014 in Proceedings of ECRIS14, MOOBMH04, Nizhny Novgorod, Russia, p. 20
[11] Mozetič M, Drobnič M and Zalar A 1999 Appl. Surf. Sci. 144-145 399
[12] Grubbs R K and George S M 2006 J. Vac. Sci. Technol. A 24 486
[13] Xu Y, Peng S X, Ren H T, Zhao J, Chen J, Zhang T, Wang Z H, Luo Y T, Guo Z Y and Chen J E 2013 in Proceedings of IPAC 2013, MOPFI035, Shanghai, China, p. 363
[14] Melin G, Drentje A G, Girard A and Hitz D 1999 J. Appl. Phys. 86 4772
[15] Zhao Q, Liu Y, Wang C, Wang S, Peng N and Jeynes C 2008 Med. Eng. Phys. 30 341
[16] Drenik A, Vesel A, Kreter A and Mozetič M 2011 Appl. Surf. Sci. 257 5820
[17] Mozetič M, Zalar A and Drobnič M 1999 Thin Solid Films 343-344 101
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Ignition dynamics of radio frequency discharge in atmospheric pressure cascade glow discharge
Ya-Rong Zhang(张亚容), Qian-Han Han(韩乾翰), Jun-Lin Fang(方骏林), Ying Guo(郭颖), and Jian-Jun Shi(石建军). Chin. Phys. B, 2023, 32(2): 025201.
[3] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[4] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[5] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[6] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[7] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[8] Fundamental study towards a better understanding of low pressure radio-frequency plasmas for industrial applications
Yong-Xin Liu(刘永新), Quan-Zhi Zhang(张权治), Kai Zhao(赵凯), Yu-Ru Zhang(张钰如), Fei Gao(高飞),Yuan-Hong Song(宋远红), and You-Nian Wang(王友年). Chin. Phys. B, 2022, 31(8): 085202.
[9] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[10] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[11] Interaction between plasma and electromagnetic field in ion source of 10 cm ECR ion thruster
Hao Mou(牟浩), Yi-Zhou Jin(金逸舟), Juan Yang(杨涓), Xu Xia(夏旭), and Yu-Liang Fu(付瑜亮). Chin. Phys. B, 2022, 31(7): 075202.
[12] Plasma-wave interaction in helicon plasmas near the lower hybrid frequency
Yide Zhao(赵以德), Jinwei Bai(白进纬), Yong Cao(曹勇), Siyu Wu(吴思宇), Eduardo Ahedo, Mario Merino, and Bin Tian(田滨). Chin. Phys. B, 2022, 31(7): 075203.
[13] A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
Yong Shen(沈勇), Yu-Hang Shen(沈煜航), Jia-Qi Dong(董家齐), Kai-Jun Zhao(赵开君), Zhong-Bing Shi(石中兵), and Ji-Quan Li(李继全). Chin. Phys. B, 2022, 31(6): 065206.
[14] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[15] Influence of water environment on paint removal and the selection criteria of laser parameters
Li-Jun Zhang(张丽君), Kai-Nan Zhou(周凯南), Guo-Ying Feng(冯国英), Jing-Hua Han(韩敬华),Na Xie(谢娜), and Jing Xiao(肖婧). Chin. Phys. B, 2022, 31(6): 064205.
No Suggested Reading articles found!