Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 083601    DOI: 10.1088/1674-1056/26/8/083601
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Effect of Ni and vacancy concentration on initial formation of Cu precipitate in Fe-Cu-Ni ternary alloys by molecular dynamics simulation

Ke Liu(刘珂), Li-Juan Hu(胡丽娟), Qiao-Feng Zhang(张巧凤), Yao-Ping Xie(谢耀平), Chao Gao(高超), Hai-Ying Dong(董海英), Wan-Yi Liang(梁婉怡)
Key Laboratory for Microstructures and Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
Abstract  

In the present work, the effects of Ni atoms and vacancy concentrations (0.1%, 0.5%, 1.0%) on the formation process of Cu solute clusters are investigated for Fe-1.24%Cu-0.62%Ni alloys by molecular dynamics (MD) simulations. The presence of Ni is beneficial to the nucleation of Cu precipitates and has little effect on coarsening rate in the later stage of aging. This result is caused by reducing the diffusion coefficient of Cu clusters and the dynamic migration of Ni atoms. Additionally, there are little effects of Ni on Cu precipitates as the vacancy concentration reaches up to 1.0%, thereby explaining the embrittlement for reactor pressure vessel (RPV) steel. As a result, the findings can hopefully provide the important information about the essential mechanism of Cu cluster formation and a better understanding of ageing phenomenon of RPV steel. Furthermore, these original results are analyzed with a simple model of Cu diffusion, which suggests that the same behavior could be observed in Cu-containing alloys.

Keywords:  Cu precipitates      vacancy concentration      Fe-Cu-Ni alloys      molecular dynamics  
Received:  13 January 2017      Revised:  04 May 2017      Accepted manuscript online: 
PACS:  36.40.-c (Atomic and molecular clusters)  
  61.82.Bg (Metals and alloys)  
  02.70.Ns (Molecular dynamics and particle methods)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 51301102) and the Science and Technology Commission of Shanghai Municipality, China (Grant No. 15ZR1416000).

Corresponding Authors:  Li-Juan Hu     E-mail:  lijuanhu@shu.edu.cn
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Ke Liu(刘珂), Li-Juan Hu(胡丽娟), Qiao-Feng Zhang(张巧凤), Yao-Ping Xie(谢耀平), Chao Gao(高超), Hai-Ying Dong(董海英), Wan-Yi Liang(梁婉怡) Effect of Ni and vacancy concentration on initial formation of Cu precipitate in Fe-Cu-Ni ternary alloys by molecular dynamics simulation 2017 Chin. Phys. B 26 083601

[1] Odette G and Lucas G 2001 JOM 53 18
[2] Nagai Y, Tang Z, Hassegawa M, Kanai T and Saneyasu M 2001 Phys. Rev. B 63 134110
[3] Dubuisson P, Schill R, Hugon M, Grislin I, Seran J, Nanstad R, Hamilton M, Garner F and Kumar A 1999 ASTM STP 1325 882
[4] Yu X M and Zhao S J 2013 Acta Metall. Sin. 49 569 (in Chinese)
[5] Yang G, Wang J X and Yang M X 2012 T. Mater. Heat Treat. 33 51
[6] Liu Q D, Gu J F and Li C W 2014 J. Mater. Res. 29 950
[7] Liu Q D and Zhao S J 2013 Metall. Mater. Trans. A 44 163
[8] Fine M, Liu J and Asta M 2007 Mater. Sci. Eng. A 463 271
[9] Monzen R, Iguchi M and Jenkins M 2000 Philos. Mag. Lett. 80 137
[10] Osamura K, Okuda H, Takashima M, Asano K and Furusaka M 1993 Mater. Trans. JIM 34 305
[11] Othen P, Jenkins M and Smith G 1994 Philos. Mag. A 70 1
[12] Liu F, Zhou B, Peng J C and Wang J A 2013 Acta Metallurgica Sinica 26 707
[13] Kamada Y, Takahashi S, Kikuchi H, Kobayashi S, Ara K, Echigoya J, Tozawa Y and Watanabe K 2009 J. Mater. Sci. 44 949
[14] Ghosh A, Mishra B, Das S and Chatterjee S 2005 Metall. Mater. Trans. A 36 703
[15] Primig S, Stechauner G and Kozeschnik E 2017 Steel Res. Int. 88
[16] Ludwig M, Farkas D, Pedraza D and Schmauder S 1998 Modell. Simul. Mater. Sci. Eng. 6 19
[17] Molnar D, Niedermeier C, Mora A, Binkele P and Schmauder S 2012 Continuum Mech. Thermodyn. 24 607
[18] Molnar D, Mukherjee R, Choudhury A, Mora A, Binkele P, Selzer M, Nestler B and Schmauder S 2012 Acta Mater. 60 6961
[19] Seko A, Odagaki N, Nishitani S R, Tanaka I and Adachi H 2004 Mater. Trans. 45 1978
[20] Soisson F, Barbu A and Martin G 1996 Acta Mater. 44 3789
[21] Cerezo A, Hirosawa S, Rozdilsky I and Smith G 2003 Philos. Trans. R. Soc. London, Ser. A 361 463
[22] Monasterio P, Wirth B and Odette G 2007 J. Nucl. Mater. 361 127
[23] Blackstock J and Ackland G 2001 Philos. Mag. A 81 2127
[24] Ackland G, Bacon D, Calder A and Harry T 1997 Philos. Mag. A 75 713
[25] Domain C and Becquart C 2001 Phys. Rev. B 65 024103
[26] Liu J Z, Van De Walle A, Ghosh G and Asta M 2005 Phys. Rev. B 72 144109
[27] Marian J, Wirth B, Odette G and Perlado J 2004 Comput. Mater. Sci. 31 347
[28] Gao N, Wei K F, Zhang S X and Wang Z G 2012 Chin. Phys. Lett. 29 096102
[29] Bergner F, Lambrecht M, Ulbricht A and Almazouzi A 2010 J. Nucl. Mater. 399 129
[30] Nagai Y, Takadate K, Tang Z, Ohkubo H, Sunaga H, Takizawa H and Hasegawa M 2003 Phys. Rev. B 67 224202
[31] Xu Q, Yoshiie T and Sato K 2006 Phys. Rev. B 73 134115
[32] Miller M, Wirth B and Odette G 2003 Mater. Sci. Eng. A 353 133
[33] Zhang C, Enomoto M, Yamashita T and Sano N 2004 Metall. Mater. Trans. A 35 1263
[34] Al-Motasem A, Posselt M and Bergner F 2011 J. Nucl. Mater. 418 215
[35] Bonny G, Pasianot R C, Castin N and Malerba L 2009 Philos. Mag. 89 3531
[36] Osamura K, Okuda H, Asano K, Furusaka M, Kishida K, Kurosawa F and Uemori R 1994 ISIJ Int. 34 346
[37] Zhu L S and Zhao S J 2014 Chin. Phys. B 23 063601
[38] Zhang C and Enomoto M 2006 Acta Mater. 54 4183
[39] Osetsky Y N and Serra A 1997 Philos. Mag. A 75 1097
[40] Wang Y, Hou H Y, Liu X B, Wang R S and Wang J T 2012 arXiv preprint arXiv: 1212.6900
[41] Plimpton S 1995 J. Comput. Phys. 117 1
[42] Soisson F and Fu C C 2007 Phys. Rev. B 76 214102
[43] Stukowski A 2009 Modell. Simul. Mater. Sci. Eng. 18 015012
[44] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graphics 14 33
[45] Ju Y Y, Zhang Q M, Gong Z Z and Ji G F 2013 Chin. Phys. B 22 083101
[46] Miller M K 2012 Atom probe tomography: analysis at the atomic level, (Springer Science & Business Media)
[47] Wei X R abd Zhao S J 2013 Shanghai Metals 35 5-8+35
[48] Kittel C 2004 Introduction to Solid State physics (Wiley)
[49] Al-Motasem A, Posselt M, Bergner F and Birkenheuer U 2011 J. Nucl. Mater. 414 161
[50] Isheim D, Gagliano M S, Fine M E and Seidman D N 2006 Acta Mater. 54 841
[51] Pareige P, Russell K and Miller M 1996 Appl. Surf. Sci. 94 362
[52] Murthy A S, Medvedeva J E, Isheim D, Lekakh S L, Richards V L and Van Aken D C 2012 Scr. Mater. 66 943
[53] Koyama T, Hashimoto K and Onodera H 2006 Mater. Trans. 47 2765
[54] Xie Y P and Zhao S J 2012 Comput. Mater. Sci. 63 329
[55] Hyde J, Sha G, Marquis E, Morley A, Wilford K and Williams T 2011 Ultramicroscopy 111 664
[56] Schober H, Petry W and Trampenau J 1992 J. Phys.: Condens. Matter 4 9321
[57] Vincent E, Becquart C and Domain C 2006 J. Nucl. Mater. 351 88
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[12] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[13] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[14] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[15] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
No Suggested Reading articles found!