Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 078801    DOI: 10.1088/1674-1056/26/7/078801
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Detection of invisible phonon modes in individual defect-free carbon nanotubes by gradient-field Raman scattering

Feng Yang(杨丰)1,3,4, Yinglu Ji(纪英露)2, Xiao Zhang(张霄)1,4, Qingxia Fan(范庆霞)1,4, Nan Zhang(张楠)1,4, Xiaogang Gu(谷孝刚)1,3,4, Zhuojian Xiao(肖卓建)1,3,4, Qiang Zhang(张强)1,4, Yanchun Wang(王艳春)1,3, Xiaochun Wu(吴晓春)2,4, Junjie Li(李俊杰)1, Weiya Zhou(周维亚)1,3,4
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 National Center for Nanoscience and Technology, Beijing 100190, China;
3 Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, China;
4 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

We provide an effective method to investigate the field gradient effect in nanoconfined plasmon–matter interaction. Aligned ultralong SWNTs without defects were grown on marked substrates, followed by assembling gold nanoparticle clusters around individual nanotubes. The Raman scattering behavior of a nanotube placed in an atomic scale nanogap between adjacent nanoparticles was studied. In addition to the expected plasmon-induced Raman enhancement up to 103, the defect-free D-mode of an individual SWNT induced by gradient field is found for the first time. When the light is confined at atomic scale, gradient field Raman scattering becomes significant and dipole-forbidden phonon modes can be activated by quadrupole Raman tensor variation, indicating breakdown of the Raman selection rules.

Keywords:  carbon nanotube      Raman scattering      electromagnetic field gradient      selection rule  
Received:  14 April 2017      Revised:  06 June 2017      Accepted manuscript online: 
PACS:  88.30.rh (Carbon nanotubes)  
  36.20.Ng (Vibrational and rotational structure, infrared and Raman spectra)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  76.60.Gv (Quadrupole resonance)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No.2012CB932302),the National Natural Science Foundation of China (Grant Nos.11634014,51172271,and 51372269),and the"Strategic Priority Research Program"of the Chinese Academy of Sciences (Grant Nos.XDA09040202 and XDA09040400).

Corresponding Authors:  Yinglu Ji, Weiya Zhou     E-mail:  wyzhou@iphy.ac.cn;jiyl@nanoctr.cn

Cite this article: 

Feng Yang(杨丰), Yinglu Ji(纪英露), Xiao Zhang(张霄), Qingxia Fan(范庆霞), Nan Zhang(张楠), Xiaogang Gu(谷孝刚), Zhuojian Xiao(肖卓建), Qiang Zhang(张强), Yanchun Wang(王艳春), Xiaochun Wu(吴晓春), Junjie Li(李俊杰), Weiya Zhou(周维亚) Detection of invisible phonon modes in individual defect-free carbon nanotubes by gradient-field Raman scattering 2017 Chin. Phys. B 26 078801

[1] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[2] Stiles P L, Dieringer J A, Shah N C and Van Duyne R R 2008 Ann. Rev. Ana. Chem. 1 601
[3] Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R and Feld M S 1997 Phys. Rev. Lett. 78 1667
[4] Ayars E J, Hallen H D and Jahncke C L 2000 Phys. Rev. Lett. 85 4180
[5] Moskovits M and Dilella D P 1980 J. Chem. Phys. 73 6068
[6] Sass J K, Neff H, Moskovits M and Holloway S 1981 J. Phys.Chem. 85 621
[7] Dresselhaus M S and Eklund P C 2000 Adv. Phys. 49 705
[8] Dresselhaus M S, Dresselhaus G, Saito R and Jorio A 2005 Phys. Rep. 409 47
[9] Heeg S, Oikonomou A, Fernandez-Garcia R, Lehmann C, Maier S A, Vijayaraghavan A and Reich S 2014 Nano Lett. 14 1762
[10] Takase M, Ajiki H, Mizumoto Y, Komeda K, Nara M, Nabika H, Yasuda S, Ishihara H and Murakoshi K 2013 Nat. Photon. 7 550
[11] Jin Z, Chu H, Wang J, Hong J, Tan W and Li Y 2007 Nano Lett. 7 2073
[12] McMahon J M, Li S, Ausman L K and Schatz G C 2012 J. Phys. Chem. C 116 1627
[13] Zhang X, Yang F, Zhao D, Cai L, Luan P, Zhang Q, Zhou W, Zhang N, Fan Q, Wang Y, Liu H, Zhou W and Xie S 2014 Nanoscale 6 3949
[14] Ma Y, Li W, Cho E C, Li Z, Yu T, Zeng J, Xie Z and Xia Y 2010 Acs Nano 4 6725
[15] Duesberg G S, Loa I, Burghard M, Syassen K and Roth S 2000 Phys. Rev. Lett. 85 5436
[16] Saito R, Jorio A, Souza A G, Dresselhaus G, Dresselhaus M S and Pimenta M A 2002 Phys. Rev. Lett. 88 027401
[17] Kurti J, Zolyomi V, Gruneis A and Kuzmany H 2002 Phys. Rev. B 65 165433
[18] Hentschel M, Saliba M, Vogelgesang R, Giessen H, Alivisatos A P and Liu N 2010 Nano Lett. 10 2721
[19] Alonso-Gonzalez P, Albella P, Neubrech F, Huck C, Chen J, Golmar F, Casanova F, Hueso L E, Pucci A, Aizpurua J and Hillenbrand R 2013 Phys. Rev. Lett. 110 203902
[20] Paradiso N, Yaghobian F, Lange C, Korn T, Schuller C, Huber R and Strunk C 2015 Phys. Rev. B 91 235449
[21] Alon O E 2001 Phys. Rev. B 63 201403
[22] Damnjanovic M, Milosevic I, Vukovic T and Sredanovic R 1999 Phys. Rev. B 60 2728
[23] Beversluis M R, Bouhelier A and Novotny L 2003 Phys. Rev. B 68 115433
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[5] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[6] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[7] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[8] High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44
Jingyi Liu(刘静仪), Yu Tao(陶雨), Chunmei Fan(范春梅), Binbin Wu(吴彬彬), Qiqi Tang(唐琦琪), and Li Lei(雷力). Chin. Phys. B, 2022, 31(3): 037801.
[9] Raman phonon anomalies in Sr(Fe1-xCox)2As2
Yanxing Yang(杨彦兴), Hewei Zhang(张鹤巍), and Haizheng Zhuang(庄海正). Chin. Phys. B, 2022, 31(2): 027401.
[10] Low-voltage soft robots based on carbon nanotube/polymer electrothermal composites
Qi Wang(王琪), Ying-Qiong Yong(雍颖琼), and Zhi-Ming Bai(白智明). Chin. Phys. B, 2022, 31(12): 128801.
[11] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[12] A review of arc-discharge method towards large-scale preparation of long linear carbon chains
Yi-Fan Zhang(张一帆). Chin. Phys. B, 2022, 31(12): 125201.
[13] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[14] Highly flexible and excellent performance continuous carbon nanotube fibrous thermoelectric modules for diversified applications
Xiao-Gang Xia(夏晓刚), Qiang Zhang(张强), Wen-Bin Zhou(周文斌), Zhuo-Jian Xiao(肖卓建), Wei Xi(席薇), Yan-Chun Wang(王艳春), and Wei-Ya Zhou(周维亚). Chin. Phys. B, 2021, 30(7): 078801.
[15] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
No Suggested Reading articles found!