Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 068702    DOI: 10.1088/1674-1056/26/6/068702
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A damping boundary condition for atomistic-continuum coupling

Jie Zhang(张杰)1, Kiet Tieu1, Guillaume Michal1, Hongtao Zhu(朱洪涛)1, Liang Zhang(张亮)1, Lihong Su(苏利红)1, Guanyu Deng(邓关宇)1,2, Hui Wang(王辉)1
1 School of Mechanical, Materials, and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522, Australia;
2 Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501, Japan
Abstract  The minimization of spurious wave reflection is a challenge in multiscale coupling due to the difference of spatial resolution between atomistic and continuum regions. In this study, a new damping condition is presented for eliminating spurious wave reflection at the interface between atomistic and continuum regions. This damping method starts by a coarse-fine decomposition of the atomic velocity based on the bridging scale method. The fine scale velocity of the atoms in the damping region is reduced by applying nonlinear damping coefficients. The effectiveness of this damping method is verified by one-and two-dimensional simulations.
Keywords:  multiscale modeling      spurious wave reflection      coarse-fine decomposition      nonlinear damping  
Received:  25 November 2016      Revised:  04 February 2017      Accepted manuscript online: 
PACS:  87.15.ap (Molecular dynamics simulation)  
  46.15.-x (Computational methods in continuum mechanics)  
  46.40.Ff (Resonance, damping, and dynamic stability)  
Corresponding Authors:  Kiet Tieu     E-mail:  ktieu@uow.edu.au

Cite this article: 

Jie Zhang(张杰), Kiet Tieu, Guillaume Michal, Hongtao Zhu(朱洪涛), Liang Zhang(张亮), Lihong Su(苏利红), Guanyu Deng(邓关宇), Hui Wang(王辉) A damping boundary condition for atomistic-continuum coupling 2017 Chin. Phys. B 26 068702

[1] Rapaport D C 1995 The art of molecular dynamics simulation (New York: Cambridge University Press) pp. 60-62
[2] Deng G Y, Tieu A K, Si L Y, Su L H, Lu C, Wang H, Liu M, Zhu H T and Liu X H 2014 Comput. Mater. Sci. 81 2
[3] Deng G Y, Lu C, Su L H, Tieu A K, Yu H L and Liu X H 2013 Comput. Mater. Sci. 74 75
[4] Broughton J Q, Abraham F F, Bernstein N and Kaxiras E 1999 Phys. Rev. B 60 2391
[5] Wagner G J and Liu W K 2003 J. Comput. Phys. 190 249
[6] Tang S, Hou T Y and Liu W K 2006 Int. J. Numer. Method Eng. 65 1688
[7] Park H S and Liu W K 2004 Comput Methods Appl. Mech. Eng. 193 1733
[8] Xiao S and Belytschko T 2004 Comput Methods Appl. Mech. Eng. 193 1645
[9] Luan B, Hyun S, Molinari J F, Bernstein N and Robbins M O 2006 Phys. Rev. E 74 046710
[10] Tadmor E B, Miller R E, Phillips R and Ortiz M 1999 J. Mater. Res. 14 2233
[11] Ren G, Zhang D and Gong X 2011 Phys. Lett. A 375 953
[12] Park H S, Karpov E G, Liu W K and Klein P A 2005 Philos. Mag. 85 79
[13] Ren G and Tang T 2014 Chin. Phys. B 23 118704
[14] Luan B and Robbins M O 2009 Tribol. Lett. 36 1
[15] Anciaux G and Molinari J F 2010 Int. J. Numer. Method Eng. 83 1255
[16] Michal G, Lu C and Kiet Tieu A 2014 Comput. Mater. Sci. 81 98
[17] Adelman S A and Doll J D 1974 J. Chem. Phys. 61 4246
[18] Cai W, Koning M, Bulatov V V and Yip S 2000 Phys. Rev. Lett. 85 3213
[19] Sadeghirad A and Tabarraei A 2013 Comput. Mech. 52 535
[20] E W and Huang Z 2001 Phys. Rev. Lett. 87 135501
[21] Qu S, Shastry V, Curtin W A and Miller R E 2005 Model. Simul. Mater. Sci. 13 1101
[22] Ramisetti S B, Anciaux G and Molinari J F 2013 Comput Methods Appl. Mech. Eng. 253 28
[23] Tadmor E B, Ortiz M and Phillips R 1996 Philos. Mag. A 73 1529
[24] Anciaux G and Molinari J F 2009 Int. J. Numer. Method Eng. 79 1041
[25] Miller R E and Tadmor E B 2009 Model. Simul. Mater. Sci. 17 053001
[26] Park H S, Karpov E G, Klein P A and Liu W K 2005 J. Comput. Phys. 207 588
[1] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[2] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[3] Modeling hydrogen exchange of proteins by a multiscale method
Wentao Zhu(祝文涛), Wenfei Li(李文飞), and Wei Wang(王炜). Chin. Phys. B, 2021, 30(7): 078701.
[4] Coarse-grained simulations on interactions between spectrins and phase-separated lipid bilayers
Xuegui Lin(林雪桂), Xiaojie Chen(陈晓洁), and Qing Liang(梁清). Chin. Phys. B, 2021, 30(6): 068701.
[5] Folding nucleus and unfolding dynamics of protein 2GB1
Xuefeng Wei(韦学锋) and Yanting Wang(王延颋). Chin. Phys. B, 2021, 30(2): 028703.
[6] Effect of interaction between loop bases and ions on stability of G-quadruplex DNA
Han-Zhen Qiao(乔汉真), Yuan-Yan Wu(吴园燕), Yusong Tu(涂育松), and Cong-Min Ji(祭聪敏). Chin. Phys. B, 2021, 30(1): 018702.
[7] Structural and dynamical mechanisms of a naturally occurring variant of the human prion protein in preventing prion conversion
Yiming Tang(唐一鸣), Yifei Yao(姚逸飞), and Guanghong Wei(韦广红)†. Chin. Phys. B, 2020, 29(10): 108710.
[8] Effect of C60 nanoparticles on elasticity of small unilamellar vesicles composed of DPPC bilayers
Tanlin Wei(魏坦琳), Lei Zhang(张蕾), Yong Zhang(张勇). Chin. Phys. B, 2020, 29(4): 048702.
[9] Effects of Mg2+ on the binding of the CREB/CRE complex: Full-atom molecular dynamics simulations
Song Mao(毛松), Shuai Wang(王帅), Haiyou Deng(邓海游), Ming Yi(易鸣). Chin. Phys. B, 2019, 28(7): 078701.
[10] Molecular dynamics simulations of membrane deformation induced by amphiphilic helices of Epsin, Sar1p, and Arf1
Zhen-Lu Li(李振鲁). Chin. Phys. B, 2018, 27(3): 038703.
[11] A network of conformational transitions in an unfolding process of HP-35 revealed by high-temperature MD simulation and a Markov state model
Dandan Shao(邵丹丹), Kaifu Gao(高恺夫). Chin. Phys. B, 2018, 27(1): 018701.
[12] Computational study of non-catalytic T-loop pocket on CDK proteins for drug development
Huiwen Wang(王慧雯), Kaili Wang(王凯丽), Zeyu Guan(管泽雨), Yiren Jian(简弋人), Ya Jia(贾亚), Fatah Kashanchi, Chen Zeng(曾辰), Yunjie Zhao(赵蕴杰). Chin. Phys. B, 2017, 26(12): 128702.
[13] Molecular dynamic simulation of the thermodynamic and kinetic properties of nucleotide base pair
Yu-Jie Wang(王宇杰), Zhen Wang(王珍), Yan-Li Wang(王晏莉), Wen-Bing Zhang(张文炳). Chin. Phys. B, 2017, 26(12): 128705.
[14] Helix-like structure formation of a semi-flexible chain confined in a cylinder channel
Xiaohui Wen(温晓会), Tieyu Sun(孙铁昱), Wei-Bing Zhang(张卫兵), Chi-Hang Lam(林志恒), Linxi Zhang(章林溪), Huaping Zang(臧华平). Chin. Phys. B, 2016, 25(9): 093601.
[15] Flexibility of nucleic acids: From DNA to RNA
Lei Bao(鲍磊), Xi Zhang(张曦), Lei Jin(金雷), Zhi-Jie Tan(谭志杰). Chin. Phys. B, 2016, 25(1): 018703.
No Suggested Reading articles found!