Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 060703    DOI: 10.1088/1674-1056/26/6/060703
GENERAL Prev   Next  

Theoretical investigation on radiation tolerance of Mn+1AXn phases

Ke-Di Yin(殷克迪)1, Xi-Tong Zhang(张西通)1, Qing Huang(黄庆)3, Jian-Ming Xue(薛建明)1,2
1 State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China;
2 CAPT, HEDPS, and IFSA Collaborative Innovation Center of MoE College of Engineering, Peking University, Beijing 100871, China;
3 Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Abstract  

Ternary Mn+1AXn phases with layered hexagonal structures, as candidate materials used for next-generation nuclear reactors, have shown great potential in tolerating radiation damage due to their unique combination of ceramic and metallic properties. However, Mn+1AXn materials behave differently in amorphization when exposed to energetic neutron and ion irradiations in experiment. We first analyze the irradiation tolerances of different Mn+1AXn (MAX) phases in terms of electronic structure, including the density of states (DOS) and charge density map. Then a new method based on the Bader analysis with the first-principle calculation is used to estimate the stabilities of MAX phases under irradiation. Our calculations show that the substitution of Cr/V/Ta/Nb by Ti and Si/Ge/Ga by Al can increase the ionicities of the bonds, thus strengthening the radiation tolerance. It is also shown that there is no obvious difference in radiation tolerance between Mn+1ACn and Mn+1ANn due to the similar charge transfer values of C and N atoms. In addition, the improved radiation tolerance from Ti3AlC2 to Ti2AlC (Ti3AlC2 and Ti2AlC have the same chemical elements), can be understood in terms of the increased Al/TiC layer ratio. Criteria based on the quantified charge transfer can be further used to explore other Mn+1AXn phases with respect to their radiation tolerance, playing a critical role in choosing appropriate MAX phases before they are subjected to irradiation in experimental test for future nuclear reactors.

Keywords:  MAX phases      radiation tolerance      Bader analysis      the first principle calculation  
Received:  22 November 2016      Revised:  10 March 2017      Accepted manuscript online: 
PACS:  07.05.Wr (Computer interfaces)  
  28.41.Qb (Structural and shielding materials)  
  47.54.Jk (Materials science applications)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 91226202 and 91426304).

Corresponding Authors:  Jian-Ming Xue     E-mail:  jmxue@pku.edu.cn

Cite this article: 

Ke-Di Yin(殷克迪), Xi-Tong Zhang(张西通), Qing Huang(黄庆), Jian-Ming Xue(薛建明) Theoretical investigation on radiation tolerance of Mn+1AXn phases 2017 Chin. Phys. B 26 060703

[1] Barsoum M W 2000 Prog. Solid State Chem. 28 201
[2] Barsoum M W, El-Raghy T, Rawn C J, Porter W D, Wang H, Payzant E A and Hubbard C R 1999 J. Phys. Chem. Solids 60 429
[3] Radhakrishnan R, Williams J J and Akinc M 1999 J. Alloys Compd. 285 85
[4] Nappé J C, Grosseau P, Audubert F, Guilhot B, Beauvy M, Benabdesselam M, and Monnet I 2009 J. Nucl. Mater. 385 304
[5] Middleburgh S C, Lumpkin G R, Riley D and Zhon Y 2013 J. Am. Ceram. Soc. 96 3196
[6] Zhao S, Xue J, Wang Y and Huang Q 2014 J. Appl. Phys. 115 023503
[7] Whittle K R, Blackford M G, Aughterson R D, Moricca S, Lumpkin G R, Riley D P and Zaluzec N J 2010 Acta Mater. 58 4362
[8] Xiao J, Yang T, Wang C, Xue J, Wang Y and Sinnott S 2015 J. Am. Ceram. Soc. 98 1323
[9] Bugnet M, Cabioćh T, Mauchamp V, Guérin P, Marteau M and Jaouen M 2010 J. Mater. Sci. 45 5547
[10] Tallman D J, Hoffman E N, Caspi E a N, Garcia-Diaz B L, Kohse G, Sindelar R L and Barsoum M W 2015 Acta Mater. 85 132
[11] Bugnet M, Mauchamp V, Oliviero E, Jaouen M and Cabioćh T 2013 J. Nucl. Mater. 441 133
[12] Nappé J C, Monnet I, Grosseau P, Audubert F, Guilhot B, Beauvy M, Benabdesselam M and Thomé L 2011 J. Nucl. Mater. 409 53
[13] Trachenko K 2004 J. Phys.: Condens. Matter 16 R1491
[14] Trachenko K, Pruneda J M, Artacho E and Dove M T 2005 Phys. Rev. B 71 184104
[15] Trachenko K, Dove M T, Artacho E, Todorov I T and Smith W 2006 Phys. Rev. B 73 174207
[16] Tang W, Sanville E and Henkelman G 2009 J. Phys.: Condens. Matter 21 084204
[17] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[18] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[19] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[20] Blöchl P E 1994 Phys. Rev. B 50 17953
[21] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[22] Li N, Mo Y X and Ching W Y 2013 J. Appl. Phys. 114 023708
[23] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[24] Mo Y, Rulis P and Ching W Y 2012 Phys. Rev. B 86 165122
[25] Sun Z M 2011 Int. Mater. Rev. 56 143
[26] Keast V J, Harris S and Smith D K 2009 Phys. Rev. B 80 214113
[27] Barsoum M W and Radovic M 2011 Ann. Rev. Mater. Res. 41 195
[28] Zhou Y C and Sun Z M 2000 Phys. Rev. B 61 12570
[29] Sickafus K E, Minervini L, Grimes R W, Valdez J A, Ishimaru M, Li F, McClellan K J and Hartmann T 2000 Science 289 748
[30] Wang C, Yang T, Xiao J, Liu S, Xue J, Wang J, Huang Q and Wang Y 2015 Acta Materialia 98 197
[31] Sickafus K E, Grimes R W, Valdez J A, Cleave A, Tang M, Ishimaru M, Corish S M, Stanek C R and Uberuaga B P 2007 Nat. Mater. 6 217
[32] Lucas G and Pizzagalli L 2007 Nucl. Instrum. Methods Phys. Res. B 255 124
[33] Phillips J C 1970 Rev. Mod. Phys. 42 317
[34] Fonseca Guerra C, Handgraaf J W, Baerends E J and Bickelhaupt F M 2004 J. Comput. Chem. 25 189
[35] Li X H, Zhu L G and Yu Q S 2000 Chem. J. Chin. Univer. 21 1118
[36] Mulliken R S 1955 J. Chem. Phys. 23 1841
[37] Latimer W M 1951 Science 113 253
[1] Magnetic anisotropy in 5d transition metal-porphyrin molecules
Yan-Wen Zhang(张岩文), Gui-Xian Ge(葛桂贤), Hai-Bin Sun(孙海斌), Jue-Ming Yang(杨觉明), Hong-Xia Yan(闫红霞), Long Zhou(周龙), Jian-Guo Wan(万建国), and Guang-Hou Wang(王广厚). Chin. Phys. B, 2021, 30(4): 047501.
No Suggested Reading articles found!