Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 058401    DOI: 10.1088/1674-1056/26/5/058401
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Improving power conversion efficiency of perovskite solar cells by cooperative LSPR of gold-silver dual nanoparticles

Peng Liu(刘鹏)1, Bing-chu Yang(杨兵初)1, Gang Liu(刘钢)1, Run-sheng Wu(吴闰生)1,3, Chu-jun Zhang(张楚俊)1, Fang Wan(万方)1, Shui-gen Li(李水根)1,3, Jun-liang Yang(阳军亮)1, Yong-li Gao(高永立)1,2, Cong-hua Zhou(周聪华)1
1 Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China;
2 Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA;
3 School of New Energy Science and Engineering, Xinyu University, Xinyu 338004, China
Abstract  

Enhancing optical and electrical performances is effective in improving power conversion efficiency of photovoltaic devices. Here, gold and silver dual nanoparticles were imported and embedded in the hole transport layer of perovskite solar cells. Due to the cooperative localized surface plasmon resonance of these two kinds of metal nanostructures, light harvest of perovskite material layer and the electrical performance of device were improved, which finally upgraded short circuit current density by 10.0%, and helped to increase power conversion efficiency from 10.4% to 11.6% under AM 1.5G illumination with intensity of 100 mW/cm2. In addition, we explored the influence of silver and gold nanoparticles on charge carrier generation, dissociation, recombination, and transportation inside perovskite solar cells.

Keywords:  light harvest      perovskite solar cells      silver nanoparticle      gold nanoparticle  
Received:  08 January 2017      Revised:  17 February 2017      Accepted manuscript online: 
PACS:  84.60.Jt (Photoelectric conversion)  
  88.40.H- (Solar cells (photovoltaics))  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61306080, 51203192, 11334014, and 51664047), the Natural Science Foundation of Hunan Province, China (Grant No. 2015JJ3143), and the Scientific and Technological Project of Hunan Provincial Development and Reform Commission, China.

Corresponding Authors:  Bing-chu Yang, Cong-hua Zhou     E-mail:  bingchuyang@csu.edu.cn;chzhou@csu.edu.cn

Cite this article: 

Peng Liu(刘鹏), Bing-chu Yang(杨兵初), Gang Liu(刘钢), Run-sheng Wu(吴闰生), Chu-jun Zhang(张楚俊), Fang Wan(万方), Shui-gen Li(李水根), Jun-liang Yang(阳军亮), Yong-li Gao(高永立), Cong-hua Zhou(周聪华) Improving power conversion efficiency of perovskite solar cells by cooperative LSPR of gold-silver dual nanoparticles 2017 Chin. Phys. B 26 058401

[1] Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S and Sum T C 2013 Science 342 344
[2] Wang J Z, Huang Q L, Xu X, Quan B G, Luo J H, Zhang Y, Ye J S, Li D M, Meng Q B and Yang G Z 2015 Chin. Phys. B 24 329
[3] Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L and Huang J 2015 Science 347 967
[4] Shao Y, Xiao Z, Bi C, Yuan Y and Huang J 2014 Nat. Commun. 5 5784
[5] Bi C, Wang Q, Shao Y, Yuan Y, Xiao Z and Huang J 2015 Nat. Commun. 6 7747
[6] Wu R, Yang B, Xiong J, Cao C, Huang Y, Wu F, Sun J, Zhou C, Huang H and Yang J 2015 Renew. Sustain. Ener. 7 043105
[7] Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y and Yang Y 2014 Science 345 542
[8] Yin X, Yao Z, Luo Q, Dai X, Zhou Y, Zhang Y, Luo S, Li J and Wang N 2016 ACS Appl. Mater. Inter. 9 2439
[9] Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S and Alam M A 2015 Science 347 522
[10] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K and Grátzel M 2013 Nature 499 316
[11] Liu M, Johnston M B and Snaith H J 2013 Nature 501 395
[12] Docampo P, Ball J M, Darwich M, Eperon G E and Snaith H J 2013 Nat. Commun. 4 2761
[13] Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J and Yang Y 2014 Science 345 295
[14] Wang D L, Cui H J, Hou G J, Zhu Z G, Yan Q B and Su G 2016 Sci. Rep. 6 18922
[15] Wu R, Yang B, Zhang C, Huang Y, Cui Y, Liu P, Zhou C, Hao Y, Gao Y and Yang J 2016 J. Phys. Chem. C 120 6996
[16] Lee D S, Kim W, Cha B G, Kwon J, Kim S J, Kim M, Kim J, Wang D H and Park J H 2015 ACS Appl. Mater. Inter. 8 449
[17] Hu Q, Wu H, Sun J, Yan D, Gao Y and Yang J 2016 Nanoscale 8 5350
[18] Atwater H A and Polman A 2010 Nat. Mater. 9 205
[19] Brown M D, Suteewong T, Kumar R S S, D'Innocenzo V, Petrozza A, Lee M M, Wiesner U and Snaith H J 2010 Nano Lett. 11 438
[20] Leijtens T, Ding I K, Giovenzana T, Bloking J T, McGehee M D and Sellinger A 2012 ACS Nano 6 1455
[21] Wang D H, Park K H, Seo J H, Seifter J, Jeon J H, Kim J K, Park J H, Park O O and Heeger A J 2011 Adv. Ener. Mater. 1 766
[22] Wang C C, Choy W C, Duan C, Fung D D, Wei E, Xie F X, Huang F and Cao Y 2012 J. Mater. Chem. 22 1206
[23] Heo M, Cho H, Jung J W, Jeong J R, Park S and Kim J Y 2011 Adv. Mater. 23 5689
[24] Shalan A E, Oshikiri T, Sawayanagi H, Nakamura K, Ueno K, Sun Q, Wu H P, Diau W G and Misawa H 2016 Nanoscale 9 1229
[25] Lu L, Luo Z, Xu T and Yu L 2012 Nano Lett. 13 59
[26] Xiong J, Yang B, Wu R, Cao C, Huang Y, Liu C, Hu Z, Huang H, Gao Y and Yang J 2015 Org. Electron. 24 106
[27] Wu R, Yang J, Xiong J, Liu P, Zhou C, Huang H, Gao Y and Yang B 2015 Org. Electron. 26 265
[28] Xiao M, Huang F, Huang W, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng Y B and Spiccia L 2014 Angew. Chem. 126 10056
[29] Le Ru E, Etchegoin P, Grand J, Félidj N, Aubard J, Lévi G, Hohenau A and Krenn J 2008 Curr. Appl. Phys. 8 467
[30] Lee J H, Park J H, Kim J S, Lee D Y and Cho K 2009 Org. Electron. 10 416
[31] Mahmoud M A, Poncheri A J, Phillips R L and El-Sayed M A 2010 J. Am. Chem. Soc. 132 2633
[32] Li X, Choy W C H, Lu H, Sha W E and Ho A H P 2013 Funct. Mater. 23 2728
[33] Mihailetchi V, Wildeman J and Blom P 2005 Phys. Rev. Lett. 94 126602
[34] Mihailetchi V, Koster L, Hummelen J and Blom P 2004 Phys. Rev. Lett. 93 216601
[35] Shuttle C, Hamilton R, O'Regan B, Nelson J and Durrant J 2010 P. Nat. A. Sci. 107 16448
[36] Kim H S, Mora-Sero I, Gonzalez-Pedro V, Fabregat-Santiago F, Juarez-Perez E J, Park N G and Bisquert J 2013 Nat. Commun. 4 2242
[37] Liu Z, Shi T, Tang Z, Sun B and Liao G 2016 Nanoscale 8 7017
[38] Gonzalez-Pedro V, Juarez-Perez E J, Arsyad W S, Barea E M, Fabregat-Santiago F, Mora-Sero I and Bisquert J 2014 Nano Lett. 14 888
[1] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[2] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[3] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[4] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[5] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[6] Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics
Luoran Chen(陈烙然), Hu Wang(王虎), and Yuchuan Shao(邵宇川). Chin. Phys. B, 2022, 31(11): 117803.
[7] Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells
Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画). Chin. Phys. B, 2022, 31(11): 118801.
[8] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[9] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[10] Non-peripherally octaalkyl-substituted nickel phthalocyanines used as non-dopant hole transport materials in perovskite solar cells
Fei Qi(齐飞), Bo Wu(吴波), Junyuan Xu(徐俊源), Qian Chen(陈潜), Haiquan Shan(单海权), Jiaju Xu(许家驹), and Zong-Xiang Xu(许宗祥). Chin. Phys. B, 2021, 30(10): 108801.
[11] Two-step processed efficient perovskite solar cells via improving perovskite/PTAA interface using solvent engineering in PbI2 precursor
Cao-Yu Long(龙操玉), Ning Wang(王宁), Ke-Qing Huang(黄可卿), Heng-Yue Li(李恒月), Biao Liu(刘标), Jun-Liang Yang(阳军亮). Chin. Phys. B, 2020, 29(4): 048801.
[12] Effect of carrier mobility on performance of perovskite solar cells
Yi-Fan Gu(顾一帆), Hui-Jing Du(杜会静), Nan-Nan Li(李楠楠), Lei Yang(杨蕾), Chun-Yu Zhou(周春宇). Chin. Phys. B, 2019, 28(4): 048802.
[13] Sputtered gold nanoparticles enhanced quantum dot light-emitting diodes
Abida Perveen, Xin Zhang(张欣), Jia-Lun Tang(汤加仑), Deng-Bao Han(韩登宝), Shuai Chang(常帅), Luo-Gen Deng(邓罗根), Wen-Yu Ji(纪文宇), Hai-Zheng Zhong(钟海政). Chin. Phys. B, 2018, 27(8): 086101.
[14] Factors influencing the performance of paintable carbon-based perovskite solar cells fabricated in ambient air
Wei-Kang Xu(许伟康), Feng-Xiang Chen(陈凤翔), Gong-Hui Cao(曹功辉), Jia-Qi Wang(王嘉绮), Li-Sheng Wang(汪礼胜). Chin. Phys. B, 2018, 27(3): 038402.
[15] Novel hole transport layer of nickel oxide composite with carbon for high-performance perovskite solar cells
Sajid, A M Elseman, Jun Ji(纪军), Shangyi Dou(窦尚轶), Hao Huang(黄浩), Peng Cui(崔鹏), Dong Wei(卫东), Meicheng Li(李美成). Chin. Phys. B, 2018, 27(1): 017305.
No Suggested Reading articles found!