Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 055202    DOI: 10.1088/1674-1056/26/5/055202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Bow shocks formed by a high-speed laser-driven plasma cloud interacting with a cylinder obstacle

Yan-Fei Li(李彦霏)1,9, Yu-Tong Li(李玉同)1,8,9, Da-Wei Yuan(袁大伟)2, Fang Li(李芳)1, Bao-Jun Zhu(朱保君)1,9, Zhe Zhang(张喆)1, Jia-Yong Zhong(仲佳勇)3,8, Bo Han(韩波)2,3, Hui-Gang Wei(魏会冈)2, Xiao-Xing Pei(裴晓星)2, Jia-Rui Zhao(赵家瑞)1, Chang Liu(刘畅)3, Xiao-Xia Yuan(原晓霞)3, Guo-Qian Liao(廖国前)1, Yong-Joo Rhee4, Xin Lu(鲁欣)1,9, Neng Hua(华能)5, Bao-Qiang Zhu(朱宝强)5, Jian-Qiang Zhu(朱健强)5,8, Zhi-Heng Fang(方智恒)6, Xiu-Guang Huang(黄秀光)6,8, Si-Zu Fu(傅思祖)6,8, Gang Zhao(赵刚)2,8, Jie Zhang(张杰)7,8
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China;
3 Department of Astronomy, Beijing Normal University, Beijing 100875, China;
4 Center for Relativistic Laser Science, Institute for Basic Science, Gwangju 61005, Korea;
5 National Laboratory on High Power Lasers and Physics, Shanghai 201800, China;
6 Shanghai Institute of Laser Plasma, Chinese Academy of Engineering Physics, Shanghai 201800, China;
7 Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China;
8 Collaborative Innovation Centre of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China;
9 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

A bow shock is formed in the interaction of a high-speed laser-driven plasma cloud with a cylinder obstacle. Its temporal and spatial structures are observed by shadowgraphy and interferometry. The width of the shock transition region is ~ 50 μm, comparable to the ion-ion collision mean free path, which indicates that collision is dominated in the shock probably. The Mach-number of the ablating plasma cloud is ~ 15 at first, and decreases with time resulting in a changing shock structure. A two-dimension hydrodynamics code, USim, is used to simulate the interaction process. The simulated shocks can well reproduce the observed.

Keywords:  laboratory astrophysics      bow shock      high Mach-number      high power lasers  
Received:  01 December 2016      Revised:  26 January 2017      Accepted manuscript online: 
PACS:  52.72.+v (Laboratory studies of space- and astrophysical-plasma processes)  
  52.35.Tc (Shock waves and discontinuities)  
  52.50.Jm (Plasma production and heating by laser beams (laser-foil, laser-cluster, etc.))  
  42.30.-d (Imaging and optical processing)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2013CBA01501), the National Natural Science Foundation of China (Grant Nos. 11135012, 11375262, 11503041, and 11520101003), and the Science Challenge Program of China (Grant No. JCKY2016212A505).

Corresponding Authors:  Yu-Tong Li     E-mail:  ytli@iphy.ac.cn

Cite this article: 

Yan-Fei Li(李彦霏), Yu-Tong Li(李玉同), Da-Wei Yuan(袁大伟), Fang Li(李芳), Bao-Jun Zhu(朱保君), Zhe Zhang(张喆), Jia-Yong Zhong(仲佳勇), Bo Han(韩波), Hui-Gang Wei(魏会冈), Xiao-Xing Pei(裴晓星), Jia-Rui Zhao(赵家瑞), Chang Liu(刘畅), Xiao-Xia Yuan(原晓霞), Guo-Qian Liao(廖国前), Yong-Joo Rhee, Xin Lu(鲁欣), Neng Hua(华能), Bao-Qiang Zhu(朱宝强), Jian-Qiang Zhu(朱健强), Zhi-Heng Fang(方智恒), Xiu-Guang Huang(黄秀光), Si-Zu Fu(傅思祖), Gang Zhao(赵刚), Jie Zhang(张杰) Bow shocks formed by a high-speed laser-driven plasma cloud interacting with a cylinder obstacle 2017 Chin. Phys. B 26 055202

[1] Lee C F, Hirano N, Zhang Q Z, Shang H, Ho P T P and Mizuno Y 2015 Astrophys. J. 805 186
[2] Foster J M, Wilde B H, Rosen P A, Williams R J R, Blue B E, Coker R F, Drake R P, Frank A, Keiter P A, Khokhlov A M, Knauer J P and Perry T S 2005 Astrophys. J. Lett. 634 L77
[3] Sedykh P A 2014 Adv. Space Res. 54 14
[4] Leroy M M, Winske D, Goodrich C C, Wu C S and Papadopoulos K 1982 J. Geophys. Res. -Space Phys. 87 5081
[5] Lee M A 1982 J. Geophys. Res. -Space Phys. 87 5063
[6] Jelínek K, Němeček Z and Šafránková J 2008 Adv. Space Res. 41 1519
[7] Vignes D, Mazelle C, Rme H, Acuña M H, Connerney J E P, Lin R P, Mitchell D L, Cloutier P, Crider D H and Ness N F 2000 Geophys. Res. Lett. 27 49
[8] Dubinin E, Fraenz M, Woch J, Barabash S, Lundin R and Yamauchi M 2006 Geophys. Res. Lett. 33 L22103
[9] Luhmann J G, Russell C T, Scarf F L, Brace L H and Knudsen W C 1987 J. Geophys. Res. -Space Phys. 92 8545
[10] Aharonian F A, Akhperjanian A G, Aye K M, et al. 2004 Nature 432 75
[11] Uchiyama Y, Aharonian F A, Tanaka T, Takahashi T and Maeda Y 2007 Nature 449 576
[12] Silva L O, Marti M, Davies J R, Fonseca R A, Ren C, Tsung F S and Mori W B 2004 Phys. Rev. Lett. 92 015002
[13] Kato T N and Takabe H 2008 Astrophys. J. Lett. 681 L93
[14] Forslund D W and Shonk C R 1970 Phys. Rev. Lett. 25 1699
[15] Campbell E M, Hunt J T, Bliss E S, Speck D R and Drake R P 1986 Rev. Sci. Instrum. 57 2101
[16] Blue B E, Weber S V, Glendinning S G, Lanier N E, Woods D T, Bono M J, Dixit S N, Haynam C A, Holder J P, Kalantar D H, MacGowan B J, Nikitin A J, Rekow V V, Van Wonterghem B M, Moses E I, Stry P E, Wilde B H, Hsing W W and Robey H F 2005 Phys. Rev. Lett. 94 095005
[17] Wang F L, Pei X X, Han B, Wei H G, Yuan D W, Liang G Y, Zhao G, Zhong J Y, Zhang Z, Zhu B J, Li Y F, Li F, Li Y T, Zeng S L, Zou S Y and Zhang J 2016 High Power Laser Sci. Eng. 4 e27
[18] Zhong J Y, Li Y T, Wang X G, Wang J Q, Dong Q L, Xiao C J, Wang S J, Liu X, Zhang L, An L, Wang F L, Zhu J Q, Gu Y, He X T, Zhao G and Zhang J 2010 Nat. Phys. 6 984
[19] Liao G Q, Li Y T, Zhu B J, Li Y F, Li F, Li M C, Wang X, Zhang Z, He S K, Wang W W, Lu F, Zhang F Q, Yang L, Zhou K N, Xie N, Hong W, Gu Y Q, Zhao Z Q, Zhang B H and Zhang J 2016 Matter Radiat. Extrem. 1 187
[20] Yuan D W, Wu J F, Li Y, Lu X, Zhong J, Yin C, Su L, Liao G, Wei H, Zhang K, Han B, Wang L, Jiang S, Du K, Ding Y, Zhu J, He X, Zhao G and Zhang J 2015 Astrophys. J. 815 46
[21] Pei X X, Zhong J Y, Sakawa Y, Zhang Z, Zhang K, Wei H G, Li Y T, Li Y F, Zhu B J, Sano T, Hara Y, Kondo S, Fujioka S, Liang G Y, Wang F L and Zhao G 2016 Phys. Plasmas 23 032125
[22] Zhang K, Zhong J Y, Wang J Q, et al. 2015 High Energy Dens. Phys. 17 32
[23] Yuan D W, Li Y T, Su L N, Liao G Q, Yin C L, Zhu B J and Zhang J 2013 Sci. China Phys. Mech. 56 2381
[24] Li C K, Tzeferacos P, Lamb D, et al. 2016 Nat. Commun. 7 13081
[25] Yuan D W and Li Y T 2015 Chin. Phys. B 24 015204
[26] Liu X, Li Y T, Zhang Y, et al. 2011 New J. Phys. 13 093001
[27] Ryutov D D, Drake R P, Kane J, Liang E, Remington B A and Wood-Vasey W M 1999 Astrophys. J. 518 821
[28] Ryutov D D, Drake R P and Remington B A 2000 Astrophys. J. Suppl. S. 127 465
[29] Yuan D W, Li Y T, Liu X, Zhang Y, Zhong J Y, Zheng W D, Dong Q L, Chen M, Sakawa Y, Morita T, Kuramitsu Y, Kato T N, Takabe H, Rhee Y J, Zhu J Q, Zhao G and Zhang J 2013 High Energy Dens. Phys. 9 239
[30] Bell A R, Choi P, Dangor A E, Willi O, Bassett D A and Hooker C J 1988 Phys. Rev. A 38 1363
[31] Landau L D and Lifshitz E M 2002 Fluid Mechanics (Oxford: Butterworth-Heinemann)
[32] Han B, Wang F L, Salzmann D and Gang Z 2015 Publ. Astron. Soc. Jpn. 67 29
[33] Sorasio G, Marti M, Fonseca R and Silva L O 2006 Phys. Rev. Lett. 96 045005
[34] Ross J S, Glenzer S H, Amendt P, et al. 2012 Phys. Plasmas 19 056501
[35] Park H S, Ryutov D D, Ross J S, et al. 2012 High Energy Dens. Phys. 8 38
[1] Fiber fuse behavior in kW-level continuous-wave double-clad field laser
Jun-Yi Sun(孙骏逸), Qi-Rong Xiao(肖起榕), Dan Li(李 丹), Xue-Jiao Wang(王雪娇), Hai-Tao Zhang(张海涛), Ma-Li Gong(巩马理), Ping Yan(闫平). Chin. Phys. B, 2016, 25(1): 014204.
[2] Role of on-board discharge in shock wave drag reduction and plasma cloaking
Qiu Xiao-Ming(邱孝明), Tang De-Li (唐德礼), Sun Ai-Ping(孙爱萍), Liu Wan-Dong(刘万东), and Zeng Xue-Jun (曾学军). Chin. Phys. B, 2007, 16(1): 186-192.
No Suggested Reading articles found!