Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 036804    DOI: 10.1088/1674-1056/26/3/036804
Special Issue: TOPICAL REVIEW — 2D materials: physics and device applications
TOPICAL REVIEW—2D materials: physics and device applications Prev   Next  

A review for compact model of graphene field-effect transistors

Nianduan Lu(卢年端)1,2,3, Lingfei Wang(汪令飞)1,3, Ling Li(李泠)1,2,3, Ming Liu(刘明)1,2,3
1 Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM), Nanjing 210009, China
Abstract  

Graphene has attracted enormous interests due to its unique physical, mechanical, and electrical properties. Specially, graphene-based field-effect transistors (FETs) have evolved rapidly and are now considered as an option for conventional silicon devices. As a critical step in the design cycle of modern IC products, compact model refers to the development of models for integrated semiconductor devices for use in circuit simulations. The purpose of this review is to provide a theoretical description of current compact model of graphene field-effect transistors. Special attention is devoted to the charge sheet model, drift-diffusion model, Boltzmann equation, density of states (DOS), and surface-potential-based compact model. Finally, an outlook of this field is briefly discussed.

Keywords:  two-dimensional material      graphene      field-effect transistor      compact model  
Received:  02 December 2016      Revised:  14 February 2017      Accepted manuscript online: 
PACS:  68.35.bg (Semiconductors)  
  72.80.Vp (Electronic transport in graphene)  
Fund: 

Project supported by the Opening Project of Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, the National Natural Science Foundation of China (Grant No. 61574166), the National Basic Research Program of China (Grant No. 2013CBA01604), the National Key Research and Development Program of China (Grant No. 2016YFA0201802), and the Beijing Training Project for the Leading Talents in S&T, China (Grant No. Z151100000315008).

Corresponding Authors:  Ling Li     E-mail:  lingli@ime.ac.cn

Cite this article: 

Nianduan Lu(卢年端), Lingfei Wang(汪令飞), Ling Li(李泠), Ming Liu(刘明) A review for compact model of graphene field-effect transistors 2017 Chin. Phys. B 26 036804

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[3] Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[4] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[5] Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A and Avouris P 2010 Science 327 662
[6] Liu M, Yin X B, Ulin-Avila E, Geng B S, Zentgraf T, Lu L, Wang F and Zhang X 2011 Nature 474 64
[7] Kim S J, Choi K, Lee B, Kim Y and Hong B H 2015 Annu. Rev. Mater. Res. 45 63
[8] Hao F and Chen X 2015 Mater. Res. Express 2 105016
[9] Liu X J, Cao W Q, Huang Z H, Yuan J, Fang X Y and Cao M S 2015 Chin. Phys. Lett. 32 036802
[10] Wang J, Liang M, Fang Y, Qiu T, Zhang J and Zhi L 2012 Adv. Mater. 24 2874
[11] Schwierz F 2010 Nat. Nanotech. 5 487
[12] Danijel D, Ninoslav S, Zoran P, Ivica M, Vojakn D, Aneta P, Snezana D V and Snezana G 2015 Chin. Phys. B 24 106601
[13] Han M Y, Özyilmaz B, Zhang Y and Kim P 2007 Phys. Rev. Lett. 98 206805
[14] Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P and Shen Z X 2008 ACS Nano 2 2301
[15] Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, et al. 2007 Nat. Mater. 6 770
[16] Kim B J, Lee S K, Kang M S, Ahn J H and Cho J H 2012 ACS Nano 6 8646
[17] Park J U, Nam S, Lee M S and Lieber C M 2012 Nat. Mater. 11 120
[18] Mehmood F, Pachter R, Lu W and Boeckl J J 2013 J. Phys. Chem. C 117 10366
[19] Zong Z W, Li L, Jang J, Lu N D and Liu M 2015 J. Appl. Phys. 117 215705
[20] Lu N D, Li L, Sun P X and Liu M 2014 Chem. Phys. Lett. 614 27
[21] Moaiyeri M, Sedighiani S, Sharifi F and Navi K 2016 Frontiers of Information Technology & Electronic Engineering 17 1056
[22] Lu N D, Sun P X, Li L, Liu Q, Long S B, Lv H B and Liu M 2016 Chin. Phys. B 25 056501
[23] Buccella P, Stefanucci C, Zou H, Moursy Y, Iskander R Sallese J M and Kayal M 2016 IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems 35 1489
[24] Marinov O, Deen M J, Zschieschang U and Klauk H 2009 IEEE Trans. Electron Dev. 56 2952
[25] Marinov O, Deen M J and Datars R 2009 J. Appl. Phys. 106 064501
[26] Krishnamoorthy S and Chowdhury M H 2009 Integrated Computer-Aided Energeering 16 131
[27] https://www.src.org/program/grc/ds/research-needs/2003/compact-modeling.pdf
[28] Kacprzak T and Materka A 1983 IEEE Journal of Solid-State Circuits 18 211
[29] Li L, Marien H, Genoe J, Steyaert M and Heremans P 2010 IEEE Electron Dev. Lett. 31 210
[30] Zhao W S, Duval J, Ravelosona D, Klein J O and Kim J V 2011 J. Appl. Phys. 109 07D501
[31] Sarkhel S, Bagga N and Sarkar S K 2016 J. Comp. Electron. 15 104
[32] Aguirre-Morales J D, Fregonese S, Mukherjee C and Maneux C 2015 IEEE Trans. Electron Dev. 62 4327
[33] Hur J, Moon D I, Choi J M, Seol M L, Jeong U S and Jeon C H 2015 IEEE Trans. Electron Dev. 62 2285
[34] Meric I, Baklistskaya N, Kim P and Shepard K L 2008 Electronic Devices Meeting 2008
[35] Meric I, Han M Y, Young A F, Ozyilmaz B, Kim P and Shepard K L 2008 Nat. Nanotech. 3 653
[36] Wang H, Hus A, Kong J, Antoniadis D A and Palacios T 2011 IEEE Trans. Electron Dev. 58 1523
[37] Henry M B and Das S 2012 Circuits and Systems (ISCAS), 2012 IEEE International Symposium on
[38] Lee J and Shin H 2012 J. Korean Phys. Soc. 61 1797
[39] Frégonse S, Meng N, Nguyen H N and Majek C 2012 Solid-State Electronic 73 27
[40] Fuchs E, Dollfus P, Carval G L, Barraud S, Villanueva D, Salvetti F, Jaouen H and Skotnicki T 2005 IEEE Trans. Electron Dev. 52 2280
[41] Jiménez D 2011 IEEE Trans. Electron Dev. 58 4377
[42] Jiménez D and Moldovan O 2011 IEEE Trans. Electron Dev. 58 4049
[43] Zebrev G I, Tselykovskiy A A, Batmanova D K and Melnik E V 2013 IEEE Trans. Electron Dev. 60 1799
[44] Iannazzo M, Muzzo V L, Rodriguez S, Pandey H, Rusu A, Lemme M and Alarcon E 2015 IEEE Trans. Electron Dev. 62 3870
[45] Pasadas F and Jiménez D 2016 IEEE Trans. Electron Dev. 63 2942
[46] Scott B W and Leburton J P 2011 IEEE Trans. Nanotech. 10 1113
[47] Wang L F, Peng S A, Zong Z W, Li L, Wang W, Xu G W, Lu N D, Ji Z Y, Jin Z and Liu M 2015 Electron Devices Meeting, 2015 IEEE International
[48] Wang L F, Peng S A, Wang W, Xu G W, Lu N D, Ji Z Y, Lu N D, Li L and Liu M 2016 J. App. Phys. 120 084509
[49] Aguirre-Morales J D, Frégonse S, Mukherjee C, Maneux C and Zimmer T 2015 IEEE Trans. Electron Dev. 62 4333
[50] Aguirre-Morales J D, Frégonse S, Mukherjee C, Maneux C and Zimmer T 2016 Solid-State Device Research Conference, 2016 46th European
[51] Aguirre-Morales J D, Frégonse S, Mukherjee C, Maneux C and Zimmer T 2016 Solid-State Device Research Conference, 2016 46th European
[52] Rubén M B, Cristina G N, J G H and Félix Z 2011 Nanoscale 3 20
[53] Zhang Y, Zhang L Y and Zhou C W 2013 Accounts of Chemical Research 46 2329
[54] Xu M S, Liang T, Shi M M and Chen H Z 2013 Chemical Reviews 113 3766
[55] Gupta A, Sakthivel T and Seal S 2015 Process in Materials Science 73 44
[56] Niu T C and Li A 2015 Process in Materials Science 90 21
[57] Novoselov K S, Mishchenko A, Carvalho A and Neto A H C 2016 Science 353 6298
[58] Sah C T and Pao H C 1966 IEEE Trans. Electron Dev. 13 393
[59] Brews J R 1978 Solid-State Electrons 21 345
[60] Hess K 2000 Advanced Theory of Semiconductor Devices (New York: Wiley-IEEE Press)
[61] Chen J H 2009 Solid State Commun. 149 1080
[62] Fratini S and Ginea F 2008 Phys Rev. B 77 195415
[63] Rostron R W 1972 IEEE Trans. Electron Dev. 19 1024
[64] Baranovskii S D, Faber T, Hensel F, Thomas P and Adriaenssens G J 1996 J. Non-Cryst. Solids 198-200 214
[65] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[66] Zhu W, Perebeinos V, Freitag M and Avouris P 2009 Phys. Rev. B 80 235402
[67] Gildenblat G, Wu W M, L X, Langevelde R van, Scholten A J, Smit G D J and Klaassen D B M 2010 Compact Modeling (Netherlands: Springer) p. 4
[68] Brews J 1978 Solid State Electron. 21 345
[69] Canali C, Majni G, Minder R and Ottaviani G 1975 IEEE Trans. Electron. Dev. 22 1045
[70] Chauhan J and Guo J 2009 Appl. Phys. Lett. 95 023120
[71] Xia J., Cheng F, Li J and Tao N 2009 Nat. Nanotechnol. 4 505
[72] Kedzierski J, Hsu P L, Reina A, Kong J, Healey P, Wyatt P and Keast C 2009 IEEE Electron Device Lett. 30 745
[73] Thiele S A and Schwierz F 2010 J. Appl. Phys. 107 094505
[74] Szafranek B N, Schall D, Neumaier D and Kurz H 2012 Nano Lett. 12 1324
[75] Li Q, Hwang E H and Das Sarma S 2010 Phys. Rev. B 82 235126
[76] Wang L F, Wang W, Xu G W, Ji Z, Lu N D, Li L and Liu M 2016 Appl. Phys. Lett. 108 013503
[77] Li Q, Hwang E and Sarma S D 2011 Phys. Rev. B 84 115442
[78] Bendix P, Rakers P, Wagh P, Lemaitre L, Grabinski W, McAndrew C, Gu X and Gildenblat G 2004 Custom Integrated Circuits Conference, 2004 Proceedings of the IEEE 2004, pp. 9-12
[79] McAndrew C C 2006 IEEE Trans. Electron Devices 53 2202
[80] Joaquıīn Alvarado Ã, Iniguez B, Estrada M, Flandre D and Cerdeira A 2010 Int. J. Numer. Model 23 88
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[4] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[5] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[6] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[7] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[8] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[9] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[10] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[11] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[12] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[13] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[14] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[15] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
No Suggested Reading articles found!